SOLDER

2021 Annual Groundwater Monitoring and Corrective Action Report - Revision 1

Sandow Steam Electric Station AX Landfill - Milam County, Texas

Prepared for:

Luminant Generation Company LLC

Prepared by:

Golder Associates Inc., Member of WSP 1601 S. Mopac Expy, Suite 325D, Austin, Texas, USA 78746

+1 737 703 3900

November 2022

TABLE OF CONTENTS

LIST	<u>OF FIGURES</u> II
<u>LIST</u>	<u>OF TABLES</u> II
<u>LIST</u>	OF ATTACHMENTSII
ACR	ONYMS AND ABBREVIATIONSIII
DOC	UMENT REVISION RECORDIV
EXE	CUTIVE SUMMARYV
1.0	INTRODUCTION1
2.0	MONITORING AND CORRECTIVE ACTION PROGRAM STATUS
3.0	KEY ACTIONS COMPLETED IN 20215
4.0	PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS
5.0	KEY ACTIVITIES PLANNED FOR 2022
6.0	REFERENCES

LIST OF FIGURES

Figure 1 Detailed Site Plan

LIST OF TABLES

- Table 1
 Statistical Background Values
- Table 2
 Appendix III Analytical Results

LIST OF ATTACHMENTS

- Attachment 1 2021 and 2022 Alternate Source Demonstration Reports
- Attachment 2 Groundwater Potentiometric Surface Map
- Attachment 3 Laboratory Analytical Reports

ACRONYMS AND ABBREVIATIONS

CCR	Coal Combustion Residuals
C.F.R.	Code of Federal Regulations
GWPS	Groundwater Protection Standard
MCL	Maximum Concentration Level
mg/L	Milligrams per Liter
NA	Not Applicable
SSI	Statistically Significant Increase
SSL	Statistically Significant Level
T.A.C	Texas Administrative Code
USEPA	United States Environmental Protection Agency

DOCUMENT REVISION RECORD

Issue No.	Date	Details of Revisions
Revision 0	January 31, 2022	Original Document
Revision 1	November 2022	Added groundwater potentiometric surface maps, laboratory analytical reports, additional information on alternate source demonstration, and professional seals to figures where applicable

EXECUTIVE SUMMARY

Golder Associates USA Inc. (Golder), Member of WSP, has prepared this report on behalf of Luminant Generation Company LLC (Luminant) to satisfy the 2021 annual groundwater monitoring and corrective action reporting requirements of 40 C.F.R. Part 257 and 30 T.A.C. Chapter 352 for the AX Landfill (the "CCR unit") at the former Sandow Steam Electric Station in Milam County, Texas. The CCR units and CCR monitoring well network are shown on Figure 1.

At the beginning and end of the 2021 reporting period, the CCR unit was operating under a Detection Monitoring Program as described in §257.94. The Detection Monitoring Program for the AX Landfill was established in September 2017. Statistically significant increases (SSIs) above background prediction limits were identified for several Appendix III parameters as part of the 2017 through 2020 Detection Monitoring events; however, Alternate Source Demonstrations were completed which indicated that a source other than the CCR unit caused the SSIs. During 2021, SSIs were also identified for several Appendix III constituents, including for calcium in wells AX-24, AX-26, and AX-27; and sulfate in wells AX-24 and AX-26. Alternate sources for the SSIs identified in the 2021 sample data are being evaluated in accordance with §257.94. If an alternate source is not identified to be the cause of the 2021 SSIs, an Assessment Monitoring Program will be established in accordance with §257.94(e)(2).

1.0 INTRODUCTION

Golder Associates, Inc. (Golder) has prepared this report on behalf of Luminant Generation Company LLC (Luminant) to satisfy the 2021 annual groundwater monitoring and corrective action reporting requirements of the Coal Combustion Residuals (CCR) Rule for the AX Landfill at the former Sandow Steam Electric Station in Milam County, Texas. The CCR units and CCR monitoring well network are shown on Figure 1.

The CCR Rule (40 C.F.R. 257 Subpart D - *Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments*) has been promulgated by the United States Environmental Protection Agency (USEPA) to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. TCEQ has adopted portions of the federal CCR rule at 30 T.A.C. Chapter 352 (Texas CCR Rule), and USEPA published its final approval of the Texas CCR rule on June 28, 2021. See 86 Fed. Reg. 33,892 (June 28, 2021). The Texas CCR Rule became effective on July 28, 2021, and it adopts and incorporates by reference the requirements for the annual groundwater monitoring report located at 40 C.F.R. § 257.90. See 30 T.A.C. § 352.901. It further adopts and incorporates by reference the requirements monitoring in 30 T.A.C. §352.941 and 30 T.A.C. §352.951, respectively. Pursuant to 30 T.A.C. § 352.902, this report will be submitted to TCEQ for review no later than 30 days after the report has been placed in the facility's operating record. For existing CCR landfills and surface impoundments, the CCR Rule requires that the owner or operator prepare an annual groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. Per §257.90(e) of the CCR Rule, the report should contain the following information, to the extent available:

- (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
- (2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- (3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- (4) A narrative discussion of any transition between monitoring programs (*e.g.*, the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

- (5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- (6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - (i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;
 - (ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;
 - (iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):
 - (A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and
 - (B) Provide the date when the assessment monitoring program was initiated for the CCR unit.
 - (iv) If it was determined that there was a SSL above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:
 - (A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;
 - (B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;
 - (C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and
 - (D) Provide the date when the assessment of corrective measures was completed for the CCR unit.
 - (v) Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and
 - (vi) Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

The AX Landfill CCR unit is currently in a Detection Monitoring Program. The initial Detection Monitoring Program groundwater samples were collected from the AX Landfill CCR monitoring well network in October 2017. Subsequent Detection Monitoring Program groundwater samples were collected on a semi-annual basis since that time. Data evaluation is completed using procedures described in the Statistical Analysis Plan (PBW, 2017) to identify statistically significant increases (SSIs) of Appendix III parameters over background concentrations. The Detection Monitoring Program sampling dates and parameters are summarized in the following table:

Sampling Dates	Paramotors	SSIc	Assessment Monitoring		
Sampling Dates	Falameters	0015	Program Established		
Octobor 2017			No		
March 2019 (ra complex)	Appendix III	Yes	(Alternate Source		
March 2016 (re-samples)			Demonstration Completed)		
March 2018			No		
October 2019	Appendix III	Yes	(Alternate Source		
			Demonstration Completed)		
luno 2010			No		
Julie 2019	Appendix III	Yes	(Alternate Source		
November 2019			Demonstration Completed)		
May 2020			To Be Determined		
November 2020	Appendix III	Yes	(Alternate Source		
November 2020			Demonstration Completed)		
lune 2021			To Be Determined		
Nevember 2021	Appendix III	Yes	(Alternate Source Currently		
			Being Assessed)		

Detection Monitoring Program Summary

The statistical background values and Appendix III analytical data are presented in Tables 1 and 2, respectively. SSIs of Appendix III parameters were identified during each Detection Monitoring Program sampling event thus far. An initial Alternate Source Demonstration was completed in 2018, which indicated that a source other than the CCR unit caused the SSIs observed in the 2017 sample data and 2018 re-sample data. Similarly, subsequent Alternate Source Demonstrations were completed in 2019 through 2021 based on sample data collected during the previous year. As a result, the AX Landfill has remained in the Detection Monitoring Program. A summary of the Alternate Source Demonstration based on data collected in 2020 is presented in Attachment 1 as required by \$257.94(e)(2).

Detection Monitoring Program groundwater samples were collected from the CCR groundwater monitoring network on a semi-annual basis in 2021, as required by the CCR Rule. The analytical data from the 2021 semi-annual Detection Monitoring Program sampling events were evaluated using procedures described in the Statistical Analysis Plan to identify SSIs of Appendix III parameters over background concentrations. SSIs of Appendix III parameters over background concentrations. SSIs of Appendix III parameters over background concentrations were identified for calcium and sulfate, which are constituents for which SSIs had previously been attributed to alternate sources. Alternate sources for the SSIs identified in the 2021 sample data are being evaluated in accordance with §257.94. If an alternate source is not identified to be the cause of the SSI, an Assessment Monitoring Program will be established in accordance with §257.94(e)(2).

3.0 KEY ACTIONS COMPLETED IN 2021

Semi-annual Detection Monitoring Program groundwater monitoring events were conducted in June and November 2021. The number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and the analytical results for the groundwater samples are summarized in Table 2. A map showing the CCR units and monitoring wells is provided as Figure 1. No wells were installed or decommissioned during 2021.

As noted in Section 2.0, SSIs were observed during the initial and subsequent CCR groundwater monitoring events at the Site. SSIs have been observed for boron, calcium, fluoride, and/or sulfate, which are all naturally occurring constituents in groundwater. The SSIs were not attributed to a release from the AX Landfill because: (1) Concentrations of the constituents with SSIs were higher in groundwater samples from other Site wells where SSIs were not observed, including from wells hydraulically upgradient of the AX Landfill, and (2) Groundwater flow characteristics indicate that groundwater could not have traveled from the active landfill cells to the wells where SSIs were observed during the time since CCR was first placed in the cells. The AX Landfill is constructed within highly heterogeneous mine spoil material that was previously excavated and backfilled during lignite mining operations at the Sandow Lignite Mine. The disruption of stratified sediments during mining and exposure of sediment surfaces and pore spaces in fine-grained materials that were previously isolated from the groundwater flow system results in increased dissolved solids and increased heterogeneity in groundwater composition during the post-mining period. Alternate Source Demonstration Reports have been completed in accordance with the CCR rule requirements, which attributed the SSIs to natural variation in groundwater quality due to the post-mine increase in dissolved solids and heterogeneity of the mine spoil groundwater system. Additional details on the SSI evaluations are provided in the 2021 and 2022 Alternate Source Demonstration reports in Attachment 1.

Water elevations measured in the CCR wells during the semi-annual groundwater sampling events were used to develop groundwater potentiometric surface maps, which are presented in Attachment 2. The inferred direction of groundwater flow was to the east during both semi-annual ground sampling events in 2021.

Laboratory analytical reports for the 2021 groundwater samples are presented in Attachment 3.

4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the CCR groundwater monitoring program in 2021.

5.0 KEY ACTIVITIES PLANNED FOR 2022

The following key activities are planned for 2022:

- Luminant submitted a registration application to TCEQ under the Texas CCR Rule for the Sandow AX Landfill on January 24, 2022.
- Continue the Detection Monitoring Program in accordance with applicable provisions of 40 C.F.R. §257.95 and 30 T.A.C. §352.941.
- If an alternate source is identified to be the cause of the SSIs observed in 2021, which are described in this report, a written demonstration will be completed within 90 days of SSI determination and included in the following Annual Groundwater Monitoring and Corrective Action Report.

6.0 **REFERENCES**

Pastor, Behling & Wheeler, LLC, 2017. Coal Combustion Residual Rule Statistical Analysis Plan, Sandow Steam Electric Station, AX Landfill, Rockdale, Texas.

Signature Page

Golder Associates Inc.

atut

Patrick J. Behling Principal Engineer

Willia V:

William F. Vienne Senior Hydrogeologist

Golder and the G logo are trademarks of Golder Associates Corporation.

FIGURES

REFERENCE(S) BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED MARCH 2022. PROJECT NO. 31404097.004

1

TABLES

Table 1Statistical Background ValuesSandow Steam Electric Station AX Landfill

Sample	Boron	Calcium	Chloride	Fluoride	Field pH	Sulfate	Total Dissolved Solids
Location	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Upgradient w							
AXMW-1	0.681	569	491	0.4	5.49 7.09	2,660	5,820
AXMW-2	3.62	943	391	1.88	4.6 7.63	3,040	4,940
AX-23	1.1	475	313	0.4	3.24 7.95	1,030	3,090
AX-29	0.432	791	306	0.4	2.73 7.01	1,440	3,370
Downgradier	nt Wells						
AX-24	0.311	273	580	0.4	3.89 9.38	1,010	2,520
AX-25(R)	0.298	262	1,140	0.507	4.69 9.2	795	3,980
AX-26	0.446	915	3,040	0.4	5.07 8.14	1,200	8,300
AX-27	0.281	366	1,020	0.4	6.08 7.3	478	3,620
AX-28	0.393	633	756	0.4	4.67 8.55	2,280	3,790

Table 2Appendix III Analytical ResultsSandow Steam Electric Station AX Landfill

Sample	Date	T	· · · · · · · · · · · · · · · · · · ·			<u> </u>		
Location	Sampled	В	Са	CI	F	Field pH	SO ₄	TDS
Upgradient V	Vells							
	10/03/17	0.46	477	348	<0.1	5.75	1990	3620
	03/21/18	0.50	425	267	0.122 J	5.89	2050	3680
	10/09/18	0.51	473	229	0.37	6.31	2260	3730
	06/27/19	0.80	371	242	0.37	5.10	1720	2810
AXMW-1	11/12/19	1.14	362	138	0.115 J	5.33	1540	2800
	05/19/20	2.27	296	137	<0.100	4.87	1570	2680
	11/11/20	4.08	369	202	0.112 J	5.55	1560	2680
	06/07/21	5.43	293	146	<0.100	4.50	1360	2290
	11/17/21	8.21	292	160	0.181 J	5.85	1470	2600
	10/03/17	2.14	644	207	<0.1	5.93	1990	3640
	03/21/18	2.64	628	218	1.18	5.80	2280	4050
	10/09/18	1.47	562	179	0.84	6.66	1960	3280
	06/27/19	1.75	578	203	1.39	5.87	1720	3280
AXMW-2	11/12/19	0.88	483	147	0.228 J	6.14	1160	2480
	05/19/20	0.74	396	143	<0.100	6.19	1150	2490
	11/11/20	0.67	539	180	<0.100	6.35	1240	2610
	06/07/21	0.58	449	131	<0.100	6.28	1180	2550
	11/17/21	0.622	423	118	0.224 J	6.44	1160	2620
	10/03/17	0.31	316	184	<0.1	6.43	631	1620
	03/23/18	0.31	309	193	0.77	6.09	655	1730
	10/09/18	0.38	305	210	0.45	7.00	636	1700
	06/27/19	0.31	335	224	0.49	6.19	652	1760
AX-23	11/12/19	0.34	304	183	0.186 J	6.28	590	1640
	05/19/20	0.35	277	232	<0.100	6.14	641	1750
	11/11/20	0.35	357	256	0.105 J	6.40	677	1800
	06/09/21	0.335	318	238	0.368 J	6.17	655	1720
	11/17/21	0.278	300	248	0.259 J	6.35	651	1860

Table 2Appendix III Analytical ResultsSandow Steam Electric Station AX Landfill

Sample	Date							
Location	Sampled	В	Ca	CI	F	Field pH	SO ₄	TDS
	10/03/17	0.32	392	276	<0.1	6.20	1110	2480
	03/23/18	0.30	356	285	0.81	5.89	1160	2450
	10/09/18	0.36	339	274	0.45	6.99	1060	2390
	06/27/19	0.31	352	275	<1.00	5.85	1110	2460
AX-29	11/13/19	0.47	449	281	<0.100	5.80	1210	2850
	05/19/20	0.37	308	261	<0.100	5.85	1050	2560
	11/11/20	0.39	429	320	<0.100	5.96	1190	2700
	06/10/21	0.37	365	245	<0.100	6.17	1090	2580
	11/16/21	0.341	339	297	0.201 J	5.90	1120	2630
Downgradie	nt Wells							
	10/02/17	0.13	252	307	<0.1	6.12	632	1810
	03/26/18	0.13	254	309	0.279 J	5.82	762	1880
	10/08/18	0.18	260	283	0.59	6.82	759	1840
	07/02/19	0.14	325	244	0.49	5.80	887	2060
AX-24	11/13/19	0.20	319	226	<0.100	5.91	752	2040
	05/19/20	0.19	271	256	<0.100	5.87	800	2080
	11/12/20	0.17	368	300	<0.100	5.98	947	2180
	06/09/21	0.166	339	201	<0.100	5.86	1040	2240
	11/18/21	0.153	333	179	0.138 J	6.00	1070	2390
	10/03/17	0.21	325	586	<0.1	6.37	504	2400
	3/16/2018 resample		302					
	03/26/18	0.20	281	583	0.75	6.38	526	2420
AX-25	10/08/18	0.23	324	586	1.01	7.09	492	2360
	07/02/19	0.20	384	616	0.87	6.26	608	2590
	11/12/19							
	05/07/20							
	05/19/20	0.28	218	573	0.269 J	6.25	592	2470
AX-25R	11/11/20	0.23	264	515	0.270 J	6.38	524	2210
	06/07/21	0.213	228	355	0.42	6.36	475	2020
	11/16/21	0.197	210	400	0.493	6.50	492	2120

Table 2Appendix III Analytical ResultsSandow Steam Electric Station AX Landfill

Sample	Date							
Location	Sampled	В	Ca	CI	F	Field pH	SO ₄	TDS
	10/02/17	0.35	666	1100	<0.1	6.38	945	3740
	03/26/18	0.34	912	1820	<0.1	6.41	1300	4980
	10/08/18	0.40	905	1720	<0.1	7.09	1220	4680
	07/02/19	0.36	409	465	0.45	6.14	643	2380
AX-26	11/13/19	0.39	651	1010	<0.100	5.91	853	3350
	05/19/20	0.38	617	1240	<0.100	6.20	838	3830
	11/12/20	0.40	980	2060	<0.100	6.29	1240	5110
	06/09/21	0.383	896	1790	<0.100	5.95	1120	4800
	11/18/21	0.360	939	2230	<0.100	6.13	1280	5930
	10/02/17	0.21	462	652	<0.1	6.19	569	2490
	3/16/2018 resample		453				659	
	3/16/2018 dup		456				648	
	03/26/18	0.21	438	584	<0.1	6.29	661	2350
ΔX-27	10/08/18	0.25	422	540	0.14	7.17	554	2220
M-21	07/02/19	0.21	379	459	0.59	6.05	520	2090
	11/13/19	0.26	395	465	<0.100	6.05	480	2050
	05/19/20	0.30	329	479	<0.100	6.20	450	1930
	11/12/20	0.29	432	569	<0.100	6.47	522	2080
	06/09/21	0.307	384	464	<0.100	6.03	535	1980
	11/18/21	0.249	390	461	0.204 J	6.47	419	1980
	10/02/17	0.21	664	384	<0.1	6.25	1670	3350
	3/16/2018 resample		634					
	03/23/18	0.20	621	354	<0.1	6.17	1720	3430
	10/08/18	0.31	578	230	0.47	6.87	1710	3300
AV 29	10/8/18 dup	0.32	577	233	0.51	0.07	1780	3370
AX-20	06/27/19	0.30	585	146	0.15	5.87	1870	3320
	11/13/19	0.23	616	235	<0.100	5.57	1820	3560
	05/19/20	0.23	492	153	<0.100	5.97	1870	3250
	11/11/20	0.21	577	126	<0.100	6.09	1810	3200
	06/09/21	0.188	461	80.2	<0.100	5.91	1610	2810
	11/16/21	0.256	466	61.9	0.198 J	5.99	1760	3040

Notes:

1. Abbreviations: mg/L - milligram per liter; s.u. - standard units.

2. J - concentration is below method quantitation limit; result is an estimate.

ALTERNATE SOURCE DEMONSTRATION REPORTS

ATTACHMENT 1

ALTERNATE SOURCE DEMONSTRATION SUMMARY SANDOW STEAM ELECTRIC STATION – AX LANDFILL

Introduction

This Alternate Source Demonstration Summary was prepared to document that a source other than the AX Landfill (the Site) caused the statistically significant increases (SSIs) over background levels observed during the 2020 Coal Combustion Residual (CCR) Detection Monitoring Program sampling events as required by 40 CFR 257.94(e)(2) (the "CCR Rule").

AX Landfill History and CCR Monitoring Well Network

A Site Plan showing the AX Landfill and vicinity is shown on Figure 1. The AX Landfill consists of Cells 1 and 2 and covers an area of approximately 70 acres (Figure 1). Cell 2A of the AX Landfill was constructed adjacent to Cells 1 and 2, but was never used. Construction of Cell 1 was completed in July 2013 and construction of Cell 2 was completed in October 2015. Placement of Unit No. 5 CCR began in Cell 1 in May 2015 and Cell 2 in September 2016. CCR has never been placed in Cell 2A. The Sandow Steam Electric Station, which was formerly the source of CCR to the AX Landfill, ceased power generation operations in 2018. CCR has not been placed in the AX Landfill since the plant shut down in 2018.

The AX Landfill is constructed within highly heterogeneous overburden spoil material that was previously excavated and backfilled during lignite mining operations at the Sandow Lignite Mine. The uppermost aquifer at the Site occurs under unconfined conditions within the overburden spoil and extends to the base of the spoil, where lignite and/or clay confining units are encountered. An average linear flow velocity of 0.15 feet/day was calculated for the AX Landfill based on aquifer characteristics presented in the Groundwater Monitoring System Certification for the Site (PBW, 2017a).

The CCR groundwater monitoring well system at AX Landfill consists of six monitoring wells (MW-02, MW-05, MW-07, MW-08R, MW-09, and AL-10) that are each screened in the uppermost aguifer at the Site. Groundwater elevations have consistently been highest west of the AX Landfill and lowest east of the AX Landfill, with a groundwater flow direction generally from west to east. Based on the observed groundwater potentiometric surface at the Site, the location of each CCR monitoring well relative to the AX Landfill 1 is as follows:

Upgradient/Background Wells	Downgradient Wells
AXMW-1	AX-24
AXMW-2	AX-25/25R
AX-23	AX-26
AX-29	AX-27
	AX-28

Previous Detection Monitoring Results

Detection Monitoring Program groundwater data collected from the AX Landfill CCR monitoring well network from 2017 through 2020 are summarized in Table 1. The initial Detection Monitoring Program groundwater samples were collected from the AX Landfill in October 2017. SSIs were observed during the initial sampling event for calcium in wells AX-25, AX-27, and AX-28 and sulfate in well AX-27. SSIs were subsequently observed during the 2018 semi-annual groundwater sampling events for calcium in wells AX-25 and AX-27, sulfate in wells AX-26

and AX-27, and fluoride in wells AX-23, AX-24, AX-25, AX-28, and AX-29. Alternate Source Demonstration Reports (PBW 2018; Golder 2019; Golder 2020) attributed the SSIs to natural variation in groundwater quality due to the heterogeneity of the spoil groundwater system based on: (1) Concentrations of the constituents with SSIs were higher in groundwater samples from other Site wells, including from wells hydraulically upgradient of the AX Landfill, and (2) Groundwater flow velocity calculations indicate that groundwater could not have traveled from the active landfill cells to the wells where SSIs were observed during the time since CCR was first placed in the cells. Based on the results of the Alternate Source Demonstrations, the AX Landfill has remained in the Detection Monitoring Program.

2020 Semi-Annual Detection Monitoring Results

Detection Monitoring Program groundwater samples were collected on a semi-annual basis from the AX Landfill CCR monitoring well network in 2020 in accordance with 40 CFR 257.94. SSIs were observed during the 2020 semi-annual groundwater sampling events in downgradient wells AX-24 (calcium), AX-25R (calcium), AX-26 (calcium and sulfate), and AX-27 (boron, calcium, and sulfate).

Data variability across the CCR monitoring network is very high. Boron, calcium, and sulfate concentrations in downgradient wells where SSIs were indicated have generally been lower than other wells where SSIs were not indicated and/or in background wells. For example, calcium concentrations in downgradient wells AX-24, AX-25R and AX-27 (where SSIs are indicated for calcium) are similar to or lower than calcium concentrations in downgradient well AX-28 where SSIs were not indicated and in upgradient well AXMW-2. The calcium SSI observed in well AX-26 in November 2020 (980 mg/L) is higher than calcium concentrations in other downgradient and upgradient wells; however, this calcium concentration is similar to historical calcium concentrations observed in samples from AX-26 that did not indicate SSIs and, as discussed in the paragraph below, AX-26 is located sufficiently far from the landfill cells containing CCR that groundwater from these areas would not have reached AX-26 by 2020. Concentrations of sulfate in the downgradient wells where SSIs were indicated (AX-26 and AX-27) have consistently been lower than concentrations in downgradient wells where SSIs were not indicated and in upgradient wells. Boron concentrations in downgradient well AX-27 are lower than all boron concentrations in 2020 groundwater samples from all upgradient wells. Based on the high site-wide variability in boron, calcium, and sulfate sample concentrations, the SSIs observed during the 2020 semi-annual monitoring events are attributed to natural variability in groundwater guality related to heterogeneity of the mine spoil rather than a release from the AX Landfill.

This conclusion is further supported by the location of the wells where SSIs were identified relative to Cells 1 and 2. Based on the timing of CCR placement in the AX Landfill and the calculated average linear groundwater velocity (0.15 feet/day) by PBW (2017a), wells AX-24, AX-25R, and AX-26 are all located sufficiently far from Cells 1 and 2 that affected water in contact with the cells would not have reached these wells by the time that the 2020 Detection Monitoring Program groundwater samples were collected. CCR was first placed in Cell 1 in May 2015 and in Cell 2 in September 2016. Using the conservative assumptions that the wells are located directly downgradient of the active cells (Cells 1 and 2) and that chemical adsorption is negligible, the theoretical amount of time for groundwater in contact with the active cells to reach AX-26 (approximately 800 feet from the former active cells) and AX-24 and AX-25 (both approximately 2,500 feet from the former active cells) is 15 and 40-50 years, respectively.

The other downgradient well where an SSI was identified was AX-27 (boron, calcium, and sulfate). AX-27 is located approximately 70 feet from Cell 2. The estimated amount of time it would take groundwater in contact with Cell 2 to reach AX-27 is approximately 1.3 years. Theoretically, groundwater in contact with Cell 2 could have reached AX-27 before the 2020 semi-annual groundwater samples were collected; however, the boron, calcium, and sulfate concentrations observed in the 2020 samples from well AX-27 are similar to those observed

in historical samples collected from the well before groundwater from Cell 2 would have theoretically reached AX-27. Additionally, the boron, calcium, and sulfate concentrations observed in the 2020 samples from well AX-27 are lower than concentrations observed in upgradient wells.

Conclusion

SSIs were identified for boron, calcium, and sulfate in one or more downgradient wells during the 2020 Detection Monitoring Program semi-annual groundwater sampling events at the AX Landfill. However, all observed SSIs are attributed to natural variability in groundwater quality due to the heterogeneity of the mine spoil groundwater system and are not considered evidence of a release from the CCR unit. In accordance with Section 257.94(e)(2), Luminant should continue the Detection Monitoring Program at the unit. Initiation of an Assessment Monitoring Program is not required at this time.

References

- Pastor, Behling & Wheeler, LLC (PBW), 2017a. Coal Combustion Residual Rule, Groundwater Monitoring System Certification, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas. October 16, 2017.
- Pastor, Behling & Wheeler, LLC (PBW), 2018. Coal Combustion Residual Rule, Alternate Source Demonstration Report, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas.
- Golder Associates (Golder), 2019. Coal Combustion Residual Rule, Alternate Source Demonstration Report, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas.
- Golder Associates (Golder), 2020. Coal Combustion Residual Rule, Alternate Source Demonstration Report, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas.

PROFESSIONAL CERTIFICATION

This document and all attachments were prepared by Golder Associates Inc. under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that the alternative source demonstration at the referenced facility meets the requirements of Section 257.94(e)(2) of the CCR Rule.

atur A. Bel

Patrick J. Behling, P.E. Principal Engineer GOLDER ASSOCIATES INC.

Table 1
CCR Groundwater Detection Monitoring Data Summary
Sandow Steam Electric Station - AX Landfill

Sample	Date	В		Ca		CI		F		Field	рН	SO	4	TD	S
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
Upgradien	nt Wells	Liiiit	Data	Liint	Data	Liint	Data		Data		Dala	Liint	Data	Liiiit	Data
	10/03/17		0.46		477		348		<0.1		5.75		1990		3620
	03/21/18		0.50		425		267		0.122 J		5.89		2050		3680
	10/09/18		0.51		473		229		0.37		6.31		2260		3730
AXMW-1	06/27/19	0.68	0.80	569	371	491	242	0.40	0.37	5.49	5.10	2660	1720	5820	2810
	11/12/19		1.14		362		138		0.115 J	7.09	5.33		1540		2800
	05/19/20		2.27		296		137		<0.100		4.87		1570		2680
	11/11/20		4.08		369		202		0.112 J		5.55		1560		2680
	10/03/17		2.14		644		207		<0.1		5.93		1990		3640
	03/21/18	3.62	2.64	628	628	1	218	1.88	1.18	4.6 7.63	5.80	5.80 6.66 5.87 6.14 6.19	2280	4940 3	4050
	10/00/18		1 47		562		170		0.84		6.66		1960		3280
AXMW-2	06/27/10		1.75	943	943 578	391	202		1 20		5.00		1720		2200
/04/17/2	00/27/19		1.75	010			203		1.39		0.07		1720		3260
	11/12/19		0.88		483		147		0.228 J		6.14		1160		2480
	05/19/20		0.74		396		143		<0.100	_	6.19		1150		2490
	11/11/20		0.67		539		180		<0.100		6.35		1240		2610
	10/03/17		0.31		316		184		<0.1		6.43		631		1620
	03/23/18		0.31		309		193		0.77		6.09		655		1730
	10/09/18		0.38		305		210		0.45	2.24	7.00		636		1700
AX-23	06/27/19	1.10	0.31	475	335	313	224	0.40	0.49	3.24 7.95	6.19	1030	652	3090	1760
	11/12/19		0.34		304		183		0.186 J		6.28		590		1640
	05/19/20		0.35		277		232		<0.100		6.14		641		1750
	11/11/20		0.35		357		256		0.105 J		6.40		677		1800

Table 1
CCR Groundwater Detection Monitoring Data Summary
Sandow Steam Electric Station - AX Landfill

Sample	Date	B		Ca		CI		F		Field	рН	SO	4	TDS	6
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
	10/03/17	Limit		Limit	Data	Limit	Data	Limit			6 20	Limit	1110	Limit	2480
	02/22/19		0.32		356		270		0.1		5.20		1160		2460
	10/00/10		0.30		220		200		0.01		6.00		1060		2400
AX-29	10/09/10	0.42	0.30	701	359	306	274	0.40	0.45	2.73	0.99	1110	1000	3370	2390
	00/27/19	0.43	0.31	791	352		275		<1.00	7.01	5.65	- 1440	1010		2460
	11/13/19		0.47		449		201		<0.100		5.60		1210		2650
	05/19/20		0.37		308		261		<0.100	-	5.85		1050		2560
D	11/11/20		0.39		429		320		<0.100		5.96		1190		2700
Downgrad	lient wells														
	10/02/17		0.13		252		307		<0.1		6.12	-	632		1810
	03/26/18	0.31	0.13		254		309		0.279 J		5.82		762		1880
	10/08/18		0.18		260		283		0.59		6.82		759		1840
AX-24	07/02/19		0.14	273	325	580	244	0.40	0.49	3.89 9.38	5.80	1010	887	2520	2060
	11/13/19		0.20		319		226		<0.100		5.91		752		2040
	05/19/20		0.19		271		256		<0.100		5.87		800		2080
	11/12/20		0.17		368		300		<0.100		5.98		947		2180
	10/03/17		0.21		325		586		<0.1		6.37		504		2400
	03/16/18				302					4 60				3980	
	03/26/18	0.30	0.20	262	281	1140	583	0.51	0.75	9.20	6.38	795	526		2420
AX-25	10/08/18		0.23		324		586		1.01		7.09		492		2360
	07/02/19		0.20		384		616		0.87		6.26		608		2590
	11/12/19		1					Well Dar	naged	1			I		
	05/07/20						We	ll Plugged an	d Abando	oned					

Table 1
CCR Groundwater Detection Monitoring Data Summary
Sandow Steam Electric Station - AX Landfill

Sample	Date	В	Ca Cl			F		Field	рН	SO ₄		TDS	3		
Location	Sampled	Prediction	Sample Data	Prediction	Sample Data	Prediction	Sample	Prediction	Sample Data	Prediction	Sample Data	Prediction	Sample Data	Prediction	Sample Data
	05/19/20		0.28	Linit	218		573	Emit	0.260 1		6.25	Linit	502	Emit	2470
AX-25R	03/13/20	0.30	0.20	262	210	1140	- 575	0.51	0.203 0	4.69 9.20	0.20	795.00		3980	2470
	11/11/20		0.23		264		515		0.270 J	0.20	6.38		524		2210
	10/02/17		0.35		666	3040	1100	0.40	<0.1	5.07 8.14	6.38		945	8300	3740
	03/26/18]	0.34		912		1820		<0.1		6.41		1300		4980
AX-26	10/08/18		0.40	915	905		1720		<0.1		7.09		1220		4680
	07/02/19	0.45	0.36		409		465		0.45		6.14	1200	643		2380
	11/13/19		0.39		651		1010		<0.100		5.91		853		3350
	05/19/20		0.38		617		1240		<0.100		6.20		838		3830
	11/12/20		0.40		980		2060		<0.100		6.29		1240		5110
	10/02/17		0.21		462		652		<0.1		6.19		569	3620	2490
	03/16/18				453			-					659		
	/16/2018 du				456								648		
	03/26/18	0.00	0.21	266	438	1020	584	0.40	<0.1	6.08	6.29	470	661		2350
AX-27	10/08/18	0.20	0.25	300	422	1020	540	0.40	0.14	7.3	7.17	470	554		2220
	07/02/19		0.21		379 395		459		0.59		6.05		520		2090
	11/13/19		0.26				465		<0.100		6.05		480		2050
	05/19/20		0.30		329		479		<0.100	1	6.20	1	450	1	1930
	11/12/20		0.29		432		569		<0.100		6.47		522		2080

Table 1
CCR Groundwater Detection Monitoring Data Summary
Sandow Steam Electric Station - AX Landfill

Sample	Date	B		Ca		CI		F		Field	рН	SO ₄		TDS	
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
		Limit	Data		Data	Limit	Data	Limit	Data		Data	Limit	Data	Limit	Data
	10/02/17		0.21		664		384	-	<0.1		6.25		1670	3790	3350
	03/16/18				634							2280			
	03/23/18		0.20		621		354		<0.1		6.17		1720		3430
	10/08/18	0.39	0.31		578		230 233 146		0.47	4 67	6.97		1710		3300
AX-28	10/8/18 dup		0.32	633	577	756		0.40	0.51	8.55	0.07		1780		3370
	06/27/19		0.30		585				0.15		5.87		1870		3320
	11/13/19		0.23		616		235		<0.100		5.57		1820		3560
	05/19/20		0.23		492		153		<0.100		5.97		1870		3250
	11/11/20		0.21		577		126		<0.100		6.09		1810		3200
Notes:															

Notes:

Abbreviations: mg/L - milligram per liter; s.u. - standard units.
 J - concentration is below method quantitation limit; result is an estimate.

ALTERNATE SOURCE DEMONSTRATION SUMMARY SANDOW STEAM ELECTRIC STATION – AX LANDFILL

Introduction

This Alternate Source Demonstration Summary was prepared to document that a source other than the AX Landfill (the Site) caused the statistically significant increases (SSIs) over background levels observed during the 2020 Coal Combustion Residual (CCR) Detection Monitoring Program sampling events as required by 40 CFR 257.94(e)(2) of the federal CCR Rule. The Texas Commission on Environmental Quality (TCEQ) has adopted portions of the federal CCR rule at 30 T.A.C. Chapter 352 (Texas CCR Rule). The Texas CCR Rule became effective on July 28, 2021, and it adopts and incorporates by reference the requirements for the annual groundwater monitoring report located at 40 C.F.R. §257.90 (See 30 T.A.C. §352.901) and the Federal CCR Program requirements for detection and assessment monitoring at 40 C.F.R. §257.94 and §257.95 (See 30 T.A.C. §352.941 and 30 T.A.C. §352.951). Pursuant to 30 T.A.C. §352.941(c)(1), a notification was submitted to the Executive Director on January 14, 2022 indicating an intent to pursue an Alternate Source Demonstration. This Alternate Source Demonstration will be submitted to the Executive Director pursuant to 30 T.A.C. §352.941(c)(2).

AX Landfill History and CCR Monitoring Well Network

A Site Plan showing the AX Landfill and vicinity is shown on Figure 1. The AX Landfill consists of Cells 1 and 2 and covers an area of approximately 70 acres (Figure 1). Cell 2A of the AX Landfill was constructed adjacent to Cells 1 and 2 but was never used. Construction of Cell 1 was completed in July 2013 and construction of Cell 2 was completed in October 2015. Placement of Unit No. 5 CCR began in Cell 1 in May 2015 and Cell 2 in September 2016. CCR has never been placed in Cell 2A. The Sandow Steam Electric Station, which was formerly the source of CCR to the AX Landfill, ceased power generation operations in 2018. CCR has not been placed in the AX Landfill since the plant shut down in 2018.

The AX Landfill is constructed within highly heterogeneous overburden spoil material that was previously excavated and backfilled during lignite mining operations at the Sandow Lignite Mine. The uppermost aquifer at the Site occurs under unconfined conditions within the overburden spoil and extends to the base of the spoil, where lignite and/or clay confining units are encountered. An average linear flow velocity of 0.15 feet/day was calculated for the AX Landfill based on aquifer characteristics presented in the Groundwater Monitoring System Certification for the Site (PBW 2017).

The CCR groundwater monitoring well system at AX Landfill consists of nine monitoring wells that are each screened in the uppermost aquifer at the Site. Groundwater elevations have consistently been highest west of the AX Landfill and lowest east of the AX Landfill, with a groundwater flow direction generally from west to east. Based on the observed groundwater potentiometric surface at the Site, the location of each CCR monitoring well relative to the AX Landfill 1 is as follows:

Upgradient/Background Wells	Downgradient Wells
AXMW-1	AX-24
AXMW-2	AX-25/25R
AX-23	AX-26
AX-29	AX-27
	AX-28

Previous Detection Monitoring Results

Detection Monitoring Program groundwater data collected from the AX Landfill CCR monitoring well network from 2017 through 2021 are summarized in Table 1. The initial Detection Monitoring Program groundwater samples were collected from the AX Landfill in October 2017. SSIs were observed during the initial and subsequent sampling events for boron, calcium, fluoride, and/or sulfate. Alternate Source Demonstration Reports attributed the SSIs to natural variation in groundwater quality due to the heterogeneity of the spoil groundwater system based on: (1) Concentrations of the constituents with SSIs were higher in groundwater flow velocity calculations indicate that groundwater could not have traveled from the active landfill cells to the wells where SSIs were observed during the time since CCR was first placed in the cells. Based on the results of the Alternate Source Demonstrations, the AX Landfill has remained in the Detection Monitoring Program.

2021 Semi-Annual Detection Monitoring Results

Detection Monitoring Program groundwater samples were collected on a semi-annual basis from the AX Landfill CCR monitoring well network in 2021 in accordance with 40 CFR 257.94. SSIs were observed during the 2021 semi-annual groundwater sampling events in downgradient wells AX-24 (calcium and sulfate), AX-26 (calcium and sulfate), and AX-27 (calcium).

Data variability across the CCR monitoring network is very high. Calcium and sulfate concentrations in downgradient wells where SSIs were indicated in 2021 were generally lower than in other wells where SSIs were not indicated and/or in background wells. For example, calcium concentrations in downgradient wells AX-24 and AX-27 (where SSIs are indicated for calcium) are similar to or lower than calcium concentrations in downgradient wells where SSIs were not indicated and in upgradient wells. The calcium SSI observed in 2021 in well AX-26 (max concentration of 939 mg/L) is higher than calcium concentrations in other downgradient and upgradient wells; however, this calcium concentration is similar to historical calcium concentrations observed in samples from AX-26 that did not indicate SSIs and, as discussed in the paragraph below, AX-26 is located sufficiently far from the landfill cells containing CCR that groundwater from these areas would not have reached AX-26 by 2021. Concentrations of sulfate in the downgradient wells where SSIs were indicated and in upgradient wells. Based on the high site-wide variability in calcium and sulfate sample concentrations, the SSIs observed during the 2021 semi-annual monitoring events are attributed to natural variability in groundwater quality related to heterogeneity of the mine spoil rather than a release from the AX Landfill.

This conclusion is further supported by the location of the wells where SSIs were identified relative to Cells 1 and 2. Based on the timing of CCR placement in the AX Landfill and the calculated average linear groundwater velocity (0.15 feet/day) by PBW (2017), wells AX-24 and AX-26 are located sufficiently far from Cells 1 and 2 that affected water in contact with the cells would not have reached these wells by the time that the 2021 Detection Monitoring Program groundwater samples were collected. CCR was first placed in Cell 1 in May 2015 and in Cell 2 in September 2016. Using the conservative assumptions that the wells are located directly downgradient of the active cells (Cells 1 and 2) and that chemical adsorption is negligible, the theoretical amount of time for groundwater in contact with the active cells to reach AX-26 (approximately 800 feet from the former active cells) and AX-24 (approximately 2,500 feet from the former active cells) is 15 and 40-50 years, respectively.

The other downgradient well where an SSI was identified was AX-27 (calcium). AX-27 is located approximately 70 feet from Cell 2. The estimated amount of time it would take groundwater in contact with Cell 2 to reach AX-27 is approximately 1.3 years. Theoretically, groundwater in contact with Cell 2 could have reached AX-27 before the 2021 semi-annual groundwater samples were collected; however, the calcium concentrations observed in the 2021 samples from well AX-27 are similar to those observed in historical samples collected from the well before

groundwater from Cell 2 would have theoretically reached AX-27. Additionally, the calcium concentrations observed in the 2021 samples from well AX-27 are lower than concentrations observed in upgradient wells.

Conclusion

SSIs were identified for calcium and sulfate in one or more downgradient wells during the 2021 Detection Monitoring Program semi-annual groundwater sampling events at the AX Landfill. However, all observed SSIs are attributed to natural variability in groundwater quality due to the heterogeneity of the mine spoil groundwater system and are not considered evidence of a release from the CCR unit. In accordance with Section 257.94(e)(2), Luminant should continue the Detection Monitoring Program at the unit. Initiation of an Assessment Monitoring Program is not required at this time.

References

Pastor, Behling & Wheeler, LLC (PBW), 2017. Coal Combustion Residual Rule, Groundwater Monitoring System Certification, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas. October 16, 2017.

PROFESSIONAL CERTIFICATION

This document and all attachments were prepared by Golder Associates USA Inc., Member of WSP, under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that the alternative source demonstration at the referenced facility meets the requirements of Section 257.94(e)(2) of the CCR Rule.

Patert J. Belj

Patrick J. Behling, P.E. Principal Engineer GOLDER ASSOCIATES USA INC., Member of WSP

Table 1 Appendix III Analytical Results Sandow Steam Electric Station AX Landfill

Sample	Date	В		Ca		CI		F		Field	pН	SO ₄		TDS	
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
Upgradient V	Vells	LIIIII	Dala	LIIIII	Dala	Liinit	Dala	Linint	Dala	Liinit	Dala	Linnt	Dala	Liiiiit	Dala
	10/03/17		0.46		477		348		<0.1		5 75		1990		3620
AXMW-1	03/21/18	+	0.50		425		267		0 122 J		5.89		2050		3680
	10/09/18	+	0.51		473		229		0.37		6.31		2260		3730
	06/27/19	-	0.80		371		242		0.37		5.10		1720	5820	2810
	11/12/19	0.68	1.14	569	362	491	138	0.40	0.115 J	5.49	5.33	2660	1540		2800
	05/19/20	+	2.27		296		137		<0.100	7.09	4.87		1570		2680
	11/11/20	t	4.08		369		202		0.112 J		5.55		1560		2680
	06/07/21		5.43		293		146		<0.100		4.50		1360		2290
	11/17/21	1	8.21		292		160		0.181 J		5.85		1470		2600
	10/03/17		2.14		644		207		<0.1		5.93		1990		3640
	03/21/18	3.62	2.64		628		218	 	1.18		5.80		2280		4050
	10/09/18		1.47		562		179		0.84		6.66		1960		3280
	06/27/19		1.75		578		203		1.39	4.6 7.63	5.87		1720	4940	3280
AXMW-2	11/12/19		0.88	943	483 396 539	391	147		0.228 J		6.14	3040	1160		2480
	05/19/20		0.74				143		<0.100		6.19		1150		2490
	11/11/20		0.67				180		<0.100		6.35		1240		2610
	06/07/21		0.58		449		131		<0.100		6.28		1180		2550
	11/17/21		0.622		423		118		0.224 J		6.44		1160		2620
	10/03/17	-	0.31		316		184		<0.1		6.43		631		1620
	03/23/18		0.31		309		193		0.77		6.09		655		1730
	10/09/18	-	0.38		305		210		0.45		7.00		636		1700
	06/27/19	-	0.31		335		224		0.49	2.24	6.19		652		1760
AX-23	11/12/19	1.10	0.34	475	304	313	183	0.40	0.186 J	7.95	6.28	1030	590	3090	1640
	05/19/20	ļ	0.35		277		232		<0.100		6.14		641		1750
	11/11/20	ļ	0.35		357		256		0.105 J		6.40		677		1800
	06/09/21	ļ	0.335		318		238		0.368 J		6.17		655		1720
	11/17/21		0.278		300		248		0.259 J		6.35		651		1860

Table 1 Appendix III Analytical Results Sandow Steam Electric Station AX Landfill

Sample	Date	В		Ca	l	CI		F		Field	pН	SO ₄		TDS	3
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
	10/03/17	Limit	0.32	Limit	392	Limit	276	Limit	<0.1	Limit	6 20	Limit	1110	Limit	2480
AX-29	03/23/18		0.30	-	356		285		0.81		5.89		1160		2450
	10/09/18		0.36	-	339		274		0.45		6.99		1060		2390
	06/27/19		0.31	-	352		275	0.40	<1.00		5.85		1110		2460
	11/13/19	0.43	0.47	791	449	306	281		<0.100	2.73	5.80	1440	1210	3370	2850
	05/19/20	0.40	0.37		308		261		<0.100	7.01	5.85		1050		2560
	11/11/20		0.39		429		320		<0.100		5.96		1190		2700
	06/10/21		0.37		365		245		<0.100		6.17		1090		2580
	11/16/21		0.341	-	339		297		0.201 J		5.90		1120		2630
Downgradie	nt Wells												1		
	10/02/17		0.13		252		307		<0.1		6.12		632		1810
	03/26/18	0.31	0.13		254		309	0.40	0.279 J	3.89 9.38	5.82		762		1880
	10/08/18		0.18		260		283		0.59		6.82		759		1840
	07/02/19		0.14		325		244		0.49		5.80		887		2060
AX-24	11/13/19		0.20	273	319	580	226		<0.100		5.91	1010	752	2520	2040
	05/19/20		0.19		271 368 339		256		<0.100		5.87		800		2080
	11/12/20		0.17				300		<0.100		5.98		947		2180
	06/09/21		0.166				201		<0.100		5.86		1040		2240
	11/18/21		0.153		333		179		0.138 J		6.00		1070		2390
	10/03/17		0.21		325		586		<0.1		6.37		504		2400
	3/16/2018 resample				302					4.00					
	03/26/18	0.30	0.20	262	281	1140	583	0.51	0.75	4.69 9.20	6.38	795	526	3980	2420
AX-25	10/08/18		0.23		324		586		1.01		7.09		492		2360
	07/02/19		0.20		384		616		0.87		6.26		608		2590
	11/12/19							Well Dar	naged						
	05/07/20			1		v	Vell Plugged	d and Abandon	ed (replace	d by AX-25R)		r	r	r	
	05/19/20		0.28		218		573		0.269 J		6.25		592	3980	2470
AX-25R	11/11/20	0.30	0.23	262	264	1140	515	0.51	0.270 J	4.69	6.38	795	524		2210
	06/07/21	0.00	0.213		228		355	0.01	0.42	9.20	6.36		475		2020
	11/16/21		0.197		210		400		0.493		6.50		492		2120

Table 1 Appendix III Analytical Results Sandow Steam Electric Station AX Landfill

Sample	Date	В		Ca		CI		F		Field	pН	SO	4	TDS	3
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
	10/00/17	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data	Limit	Data
AX-26	10/02/17		0.35		666		1100		<0.1		6.38		945		3740
	03/26/18		0.34		912		1820		<0.1		6.41		1300		4980
	10/08/18		0.40		905		1720		<0.1		7.09		1220		4680
	07/02/19		0.36		409		465	465 1010 0.40	0.45	5.07	6.14		643		2380
	11/13/19	0.45	0.39	915	651	3040	1010		<0.100	8.14	5.91	1200	853	8300 - -	3350
	05/19/20		0.38		617		1240		<0.100		6.20		838		3830
	11/12/20		0.40		980		2060		<0.100		6.29		1240		5110
	06/09/21		0.383		896		1790		<0.100		5.95		1120		4800
	11/18/21		0.360		939		2230		<0.100		6.13		1280		5930
	10/02/17		0.21		462		652		<0.1		6.19		569		2490
	3/16/2018 resample				453			0.40					659	_	
	3/16/2018 dup				456								648		
	03/26/18	0.28	0.21		438		584		<0.1		6.29		661		2350
	10/08/18		0.25		422		540		0.14		7.17		554		2220
AX-27	07/02/19		0.21	366	379	1020	459		0.59	6.08 7.3	6.05	478	520	3620	2090
	11/13/19		0.26		395		465		<0.100		6.05		480		2050
	05/19/20		0.30		329		479		<0.100		6.20		450		1930
	11/12/20		0.29		432		569		<0.100		6.47		522		2080
	06/09/21		0.307		384		464		<0.100		6.03		535		1980
	11/18/21		0.249		390		461		0.204 J		6.47		419		1980
	10/02/17		0.21		664		384		<0.1		6.25		1670		3350
	3/16/2018 resample				634										
	03/23/18		0.20		621		354		<0.1		6.17		1720		3430
	10/08/18		0.31		578		230		0.47		0.07		1710		3300
	10/8/18 dup		0.32		577		233		0.51		0.87		1780		3370
AX-28	06/27/19	0.39	0.30	633	585	756	146	0.40	0.15	4.67 8.55	5.87	2280	1870	3790	3320
	11/13/19		0.23		616		235		<0.100	0.00	5.57		1820		3560
	05/19/20		0.23		492		153		<0.100	1	5.97		1870)))	3250
	11/11/20		0.21		577		126		<0.100	-	6.09		1810		3200
	06/09/21		0.188		461		80.2		<0.100	1	5.91		1610		2810
	11/16/21		0.256		466		61.9		0.198 J	1	5.99		1760		3040

Notes:

Notes:

Abbreviations: mg/L - milligram per liter; s.u. - standard units.
 J - concentration is below method quantitation limit; result is an estimate.
 Highlighted sample results exceed the prediction limit.

ATTACHMENT 2 GROUNDWATER POTENTIOMETRIC SURFACE MAPS

REFERENCE(S)

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY MARCH 2022.

PROJECT NO. 31404097.004

2022

11

NS GOLDER

PREPARED

REVIEWED

APPROVED

AJD

WFV

WFV

REV.

0

-

FIGURE

A-1

REFERENCE(S)

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED MARCH 2022.

PROJECT NO. 31404097.004

22

11

NS GOLDER

DESIGNED

PREPARED

REVIEWED

APPROVED

AJD

AJD

WFV

WFV

REV.

0

FIGURE A-2 ATTACHMENT 3 LABORATORY ANALYTICAL REPORTS

June 18, 2021

Will Vienne Golder 2201 Double Creek Dr #4004 Round Rock, Texas 78664 TEL: (512) 671-3434 FAX (512) 671-3446 RE: Sandow CCR

Order No.: 2106088

Dear Will Vienne:

DHL Analytical, Inc. received 8 sample(s) on 6/10/2021 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

z: Jun for

John DuPort General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-21-27

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 2106088	
WorkOrderSampleSummary 2106088	
PrepDatesReport 2106088	
AnalyticalDatesReport 2106088	
Analytical Report 2106088	
AnalyticalQCSummaryReport 2106088	
MQLSummaryReport 2106088	

2300 Double Creek Dr. Round Rock, TX 78664

Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com

MUMAUWANA L	ΥT	ICAL				En	nail	: lo g	gin@	@d	hla	na	lyti	cal.	.cor	m													ΡΑ	GE	1	OF /	[
CLIENT: GOLDAN ASSOC	violes	}																			L	ABC	DRA	то	RY	US	E OI	NLY	,				
ADDRESS: 2201 Dout	ha (Teph D	ſ.	-			~ #															HL	wc)RK	OR	DEI	R #:	2	10	26	08	8	
PHONE: 512-671-343	H	EMÀIL:				ן ר ו	J#	•								\sim		,		~													
DATA REPORTED TO: W	ill l	/ienne,	J. J	?ivnr		PR	Ol	ECT	LOC	CAT	10	N C	DR N	IAN	ME:	<u>Sa</u>	nch	γW	' (. (<u>`R</u>												
ADDITIONAL REPORT CO	PIES TO	<u>):</u>				CL	IEN	IT P	ROI	EC	Γ#	19	12	22	26	<u>`7</u>						OLL	EC	TOF	1: 〔	<u>5.</u>	J	iori	vis	5			
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PR	ESEF		TIO	N								5.10						8		$\left\lfloor \begin{array}{c} \\ \\ \end{array} \right\rfloor$						
for TRRP report?	Lab	L=LIQUID		P=PA	INT				[e	A A A		260]	LD 100				ST 827	0 62	NON	ME	ΠĔ		HERB		EASE	NIDE	H					
∐ Yes ☐ No	Use	S=SOIL		SL=SL	UDGE	ers				etat	R V B	Щ С	HOD 8	8				B A - O	B 827(AMI		ALIN		STD	Ĕ	IL&GR	CVA	Ħ					
	Only	SO=SOLID		٦		aine			.	n Ac	RESE	ž	[MET]	1006	0 8015	624.1				HOS	18.00		256 []		ICRA 8	s 🗆 o	IOIST [
	рні	Collection	Collection		Container	b					٩N	Ž	TBE	됩				625	1 608.3			HRON	6	٩ 2	1051		N 8 1	2					
Field Sample I.D.	Lab #	Date	Time	Matrix	Туре	L2	1	ç	S S	비	Q		Σ	1005	8015 [8260	8270	8270 [3082	8321		HEXC	NS 30	SVOC	META	IGN	17SS	20					
						#	Ξ	Ĩ	ΞÌ:	S	Щ		BTEX	HdT	8 B B B B B B B B B B B B B B B B B B B		PAH PAH	PEST	PCB 8	HERB	MEI		ANIO	TCLP	TCLP	RCIT] Sat	¥			FIEL	D NOT	ES
AX-25R	01	6/7/21	1415	W	p	2		1		-	X.	1																1					
AXMW-2	02		1502	\square		Ц					\prod																						
AXMW-1	03		1535					Ш			Ц	-								\square								Щ					
AX-23	04	6/9/21	0445			Щ		\square		4		-	_		_						\perp			ļ				Щ	\perp				
4X-2H	05	<u> </u>	1033	$\left - \right $		\square		┞┦╌┠		_		_	_	+	-			+		_	_	_	_					$\downarrow \downarrow$	+	_			
A1-26	06		1107			$\left \right $					$\left\{ \right\}$	-	_		+				$\left \right $		_		_				-	\square	\rightarrow				
11-70	07		12/0			\mathbb{H}		ų –		_	+	-	_	_	_			_		_								\mathbb{H}	+				
111 23	08	¥	1310		¥	\mathbb{V}		<u>v</u>		-	¥	-	+	-			_	+		+	+		┼				-	4	\rightarrow	-+			
						-							+	+	+	+		+	+	-+	+		┼─	┢	-		\vdash	+	\rightarrow				
									-	+	_	-	+	+	+			╋		_		-	-		-		┝──┼	+	+				
								\vdash	-	-	-	-	+	-	-	+		┿	┼┼	+	+	+	╋		-		\vdash	+	+				
											_	-	+	+	+	+	+	+	+	+	╈	+	+	+				+	+	-+			
										T		ŀ	+				+	+			╈		+	\square	-			+	+				
												-	+				\top		\uparrow		╈	+	\uparrow							-†			
												Γ	1															1	+				
Relinquished By: (Sign)			DATE/TIME	1/2	Receiv	/ed b	íy:					ΤU	RN	ARC	OUN	ND T	IME		LAB	ORA	TOR	YUS	E OI	NLY	~	11	, e C						7
Ann Ann	WA	6	10/21 DATE/TINAE	[6]	X /			\geq			ן הווס	(CA			T FC) .v=	RECI	EIVIN	IG T	EMP	(°C)	:		. 7					THEF	RM #:7	15
nemiquisneu by: (Sign)					Receiv	/ed b	iy:				RUS	o⊓	נט ג RU	sH-	з RU 3 D	лон- АУ[]	2 D# 	ΥЦ		CU	sto	DY S	EALS	5:	□в	RO	EN		INT	АСТ	,⊠Kna	T USEC)
Relinquished By: (Sign)			DATE/TIME		Receiv	/ed b	y:				N	IOR	MA	LÆ	2	ОТН	ER [CA	RRI	ER:		.so		FEC	DEX		UPS	5 E		URIER	🗆 от	HER
											DU	E D/	ATE		•										9A	AN	D DEI	LIVE	RED)			
	□ DHL DISPOSAL @ 5.00 each □ Return DHL COC REV 3 MAR 2021																																

Well ID	Top of	Bottom	Total	Depth to	pump	dedicated	Analysis
	Screen	of Screen	Depth	water		tubing?	
LMW-1	20	30	30	18.48	peri	yes	B, Se, SO4
LMW-2	23	33	33	21.91	peri	yes	B, Se, SO4
LMW-3	17	32	32	12.68	peri	yes	B, Se, SO4
LMW-4	41	61	61	16.33	peri	yes	B, Se, SO4
LMW-5	15	30	30	7.66	peri	yes	B, Se, SO4
LMW-6R	20	35	35	3.77	peri	yes	B, Se, SO4
LMW-7R	25	40	40	20.45	peri	yes	B, Se, SO4
LMW-8R	20	30	30	19.65	peri	yes	B, Se, SO4
LMW-9	20	30	30	12.31	peri	yes	B, Se, SO4
PC-MW-8	16.7	26.7	27	12.67	peri	yes	B, Se, SO4

A1 Landfill – PO# 19122450 – boron, selenium, sulfate – use filter for boron and selenium

AX Landfill – Multiple POs, multiple analyses – don't use filter for Appendix III, use filter for bo	oron and
selenium	

Well ID	Top of	Bottom of	Total	pump	dedicated	Analysis	РО
	Screen	Screen	Depth		tubing?		
AX-23	65	85	85	bladder	yes	App III	19122262
AX-24	60	80	80	bladder	yes	App III	19122262
AX-25R	60	70	70	peri	yes	App III	19122262
AX-26	55	75	75	bladder	yes	App III	19122262
AX-27	78	98	98	bladder	yes	App III	19122262
AX-28	25	45	45	bladder	yes	App III	19122262
AX-29	45	65	65	bladder	yes	App III	19122262
	33	53	53	bladder	yes	App III	19122262
AVIAIA-T						B, Se, SO4	19122450
	43	63	63	bladder	yes	App III	19122262
AXIVIVV-2						B, Se, SO4	19122450
AX-16	122	142	142	?	?	B, Se, SO4	19122450
AX-22	115	135	135	?	?	B, Se, SO4	19122450

*Appendix III – boron, calcium, chloride, fluoride, sulfate, TDS

Well ID	Top of	Bottom	Total	Depth to	pump	Tubing	dedicated	Analysis
	Screen	of Screen	Depth	Water		Intake	tubing?	
CSL-MW-13R	44.7	54.7	55	31.93	sub	50	no	B, Se, SO4
CSL-MW-18	34	44	50.5	32.18	sub	40	no	B, Se, SO4
CSL-MW-19	46	56	58	55.97	sub	50	no	B, Se, SO4
CSL-MW-20	49	59	60	54.88	sub	45	no	B, Se, SO4
CSL-MW-21	48	58	59.5	47.82	sub	63	no	B, Se, SO4
CSL-MW-23	35.8	55.8	56	32.57	sub	45	no	B, Se, SO4
CSL-MW-26R	85	90	95	30.69	sub	92	no	B, Se, SO4
CSL-MW-31	44.5	54.5	55	46.38	sub	50	no	B, Se, SO4
CSL-MW-34	141.5	151.5	152	122.98	sub	146	no	B, Se, SO4
CSL-MW-35	139.5	149.5	150	121.54	sub	145	no	B, Se, SO4
C-1	34.8	44.8	45	17.95	peri	40	?	B, Se, SO4
C-2	49.8	59.8	60	12.95	peri	55	?	B, Se, SO4
C-3	52.8	62.8	63	34.14	sub	58	no	B, Se, SO4
CL2-MW-4	14.5	24.5	25	8.86	peri	20	?	B, Se, SO4
CL2-MW-5	9.5	19.5	20	4.93	peri	15	?	B, Se, SO4
CL2-MW-6	39.5	49.5	50	28.54	sub	45	no	B, Se, SO4
PC-MW-2	25	35	35	22.84	peri	30	?	B, Se, SO4
PC-MW-4	148.1	158.1	160	136.89	sub	153	no	B. Se. SO4

SO2 Ponds – PO# 19122450 – boron, selenium, sulfate – use filter for boron and selenium

	Sample	Receipt Cl	necklist		
Client Name Golder			Date Rece	ived: 6/1	1/2021
Work Order Number 2106088			Received b	y: RA	
~					
Checklist completed by:	6/11/202	1	Reviewed h		6/11/2021
Signature	Date			Initials	Date
	Carrier name:	Hand Delive	red		
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present]
Custody seals intact on shippping container/cooler?	,	Yes	No 🗌	Not Present	•
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present	9
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and reco	eived?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🔽	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗌		
Container/Temp Blank temperature in compliance?		Yes 🗹	No 🗌	3.4 °C	
Water - VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA vials sub	mitted 🔽
Water - pH<2 acceptable upon receipt?		Yes 🔽	No 🗌		¥ 13171
		Adjusted?	ПО	Checked by	EL
Water - ph>9 (S) or ph>10 (CN) acceptable upon re	eceipt?	Yes	No 🗌	NA 🗹 LOT ;	¥
		Adjusted?		Checked by	
Any No response must be detailed in the comments	s section below.				
Client contacted: Da	te contacted:		Pe	rson contacted	
Contacted by: Re	garding:			1	
Comments:					
Corrective Action:					

Page 1 of 1

Laboratory Name: DHL Analytical, Inc.													
Lab	orat	tory Review Checklist: Reportable Data											
Proje	ect Na	me: Sandow CCR LRC	Date: 6/18/21										
Revie	ewer I	Name: Carlos Castro Labor	ratory Work Order: 2106088										
Prep	Batcl	h Number(s): See Prep Dates Report Run I	Batch: See Analytical Dates Report										
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵					
		Chain-of-Custody (C-O-C)											
R1	OI	1) Did samples meet the laboratory's standard conditions of samp	le acceptability upon receipt?	Χ				R1-01					
		2) Were all departures from standard conditions described in an ex	xception report?			Χ							
R2	OI	Sample and Quality Control (QC) Identification											
		1) Are all field sample ID numbers cross-referenced to the laborat	tory ID numbers?	Χ									
		2) Are all laboratory ID numbers cross-referenced to the correspon	nding QC data?	Χ									
R3	OI	Test Reports		N									
		1) Were all samples prepared and analyzed within holding times? 2) Other then these results $\leq MOL$ were all other row values have	lated by colibration standards?	X									
		2) Other than those results < MQL, were all other raw values orac 3) Were calculations checked by a page or supervisor?	cketed by calibration standards?	A V									
		4) Were all analyte identifications checked by a peer or supervisor.	r?	A V									
		5) Were sample detection limits reported for all analytes not detect	nted?	X									
		6) Were all results for soil and sediment samples reported on a dry	v weight basis?	1		X							
		7) Were % moisture (or solids) reported for all soil and sediment s	samples?			X							
		8) Were bulk soils/solids samples for volatile analysis extracted w	vith methanol per EPA Method 5035?			Χ							
		9) If required for the project, TICs reported?	-			Χ							
R4	0	Surrogate Recovery Data											
		1) Were surrogates added prior to extraction? X											
		2) Were surrogate percent recoveries in all samples within the lab	oratory QC limits?	Χ									
R5	OI	Test Reports/Summary Forms for Blank Samples	N.Y.										
		1) Were appropriate type(s) of blanks analyzed?		X									
		2) Were blanks analyzed at the appropriate frequency?	as including proposition and if	Χ									
		applicable cleanup procedures?	ss, including preparation and, if	Х									
		4) Were blank concentrations < MDL?		X									
		5) For analyte(s) detected in a blank sample, was the concentration	n, unadjusted for sample specific			37							
		factors, in all associated field samples, greater than 10 times the	concentration in the blank sample?			X							
R6	OI	Laboratory Control Samples (LCS):											
		1) Were all COCs included in the LCS?		Χ									
		2) Was each LCS taken through the entire analytical procedure, in	ncluding prep and cleanup steps?	X									
		3) Were LCSs analyzed at the required frequency?		X									
		4) Were LCS (and LCSD, if applicable) %Rs within the laborator	y QC limits?	Χ									
		5) Does the detectability data document the laboratory's capability to calculate the SDI s?	y to detect the COCs at the MDL used	Х									
		6) Was the LCSD RPD within OC limits (if applicable)?		X									
R7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data											
		1) Were the project/method specified analytes included in the MS	and MSD?	Χ									
		2) Were MS/MSD analyzed at the appropriate frequency?		Χ									
		3) Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?		Χ			R7-03					
		4) Were MS/MSD RPDs within laboratory QC limits?		Χ									
R8	OI	Analytical Duplicate Data	2										
		1) Were appropriate analytical duplicates analyzed for each matrix	x?	X									
		2) Were analytical duplicates analyzed at the appropriate frequence 3) Were PDDs or relative standard deviations within the laborator	cy /	X									
R0	OI	S) were KFDs of relative standard deviations within the faborator Method Quantitation Limits (MQLs):	y QC minits?	Λ									
		1) Are the MOLs for each method analyte included in the laborate	orv data package?	X									
		2) Do the MOLs correspond to the concentration of the lowest nor	n-zero calibration standard?	X									
		3) Are unadjusted MQLs and DCSs included in the laboratory dat	ta package?	X									
R10	OI	Other Problems/Anomalies	-										
		1) Are all known problems/anomalies/special conditions noted in	this LRC and ER?	Χ									
		2) Was applicable and available technology used to lower the SDI	L to minimize the matrix interference	x									
		affects on the sample results?		**									
		3) Is the laboratory NELAC-accredited under the Texas Laborator analytes, matrices and methods associated with this laboratory dat	ry Accreditation Program for the ta package?	X									

Lab	ora	tory Name: DHL Analytical, Inc.												
	ora		D (
Lab	ora	tory Review Checklist (continued): Supporting	Data											
Proje	ct Na	ame: Sandow CCR LRC	Date: 6/18/21											
Revie	wer	Name: Carlos Castro Labo	ratory Work Order: 2106088											
Prep	Batc	h Number(s): See Prep Dates Report Run I	Batch: See Analytical Dates Report											
#1	A^2	Description	· · ·	Yes	No	NA ³	NR ⁴	ER# ⁵						
S1	OI	Initial Calibration (ICAL)												
		1) Were recoonse factors and/or relative response factors for each a	nalyte within OC limits?	v										
		2) Were percent RSDs or correlation coefficient criteria met?	maryte within QC minits:											
		3) Was the number of standards recommended in the method used	for all analytes?	X										
		4) Were all points generated between the lowest and highest standa	rd used to calculate the curve?	X										
		5) Are ICAL data available for all instruments used?		Χ										
		6) Has the initial calibration curve been verified using an appropria	te second source standard?	Χ										
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV	V) and Continuing Calibration											
		blank (CCB):	-											
		1) Was the CCV analyzed at the method-required frequency?		Χ										
		2) Were percent differences for each analyte within the method-req	uired QC limits?	Χ										
		3) Was the ICAL curve verified for each analyte?		X										
	_	4) Was the absolute value of the analyte concentration in the inorga	anic CCB < MDL?	X										
S3	0	Mass Spectral Tuning:												
		1) Was the appropriate compound for the method used for tuning? X												
64	0	2) Were ion abundance data within the method-required QC limits?												
84	0	Internal Standards (IS): 1) Were IS area counts and retention times within the method-required OC limits?												
85	OI	1) were is area counts and retention times within the method-requi	ired QC limits?	λ										
35	01	1) Were the row data (for example, chromatograms, spectral data) t	raviewed by an analyst?	v										
		2) Were data associated with manual integrations flagged on the ray	w data?	X										
86	0	Dual Column Confirmation	Λ											
50	Ŭ	1) Did dual column confirmation results meet the method-required	OC?			X								
S 7	0	Tentatively Identified Compounds (TICs):	<											
		1) If TICs were requested, were the mass spectra and TIC data subj	ect to appropriate checks?			X								
S8	Ι	Interference Check Sample (ICS) Results:												
		1) Were percent recoveries within method QC limits?		Χ										
S9	Ι	Serial Dilutions, Post Digestion Spikes, and Method of Standard	d Additions											
		1) Were percent differences, recoveries, and the linearity within	in the QC limits specified in the		v			SO 01						
		method?	_		л			59-01						
S10	OI	Method Detection Limit (MDL) Studies												
		1) Was a MDL study performed for each reported analyte?		Х										
		2) Is the MDL either adjusted or supported by the analysis of DCSs	s?	Χ										
S11	OI	Proficiency Test Reports:												
		1) Was the lab's performance acceptable on the applicable proficier	ncy tests or evaluation studies?	Χ										
S12	OI	Standards Documentation												
		1) Are all standards used in the analyses NIST-traceable or obtained	d from other appropriate sources?	X										
<u>S13</u>	OI	Compound/Analyte Identification Procedures	. 10	V										
014	OI	1) Are the procedures for compound/analyte identification document	nted?	X										
514	UI	1) Was DOC conducted consistent with NELAC Chanter 5 Apre-	ndix C2	v										
		1) was DOC conducted consistent with NELAC Chapter $3 - Appendix 2$) is documentation of the analysis's competency up to date and on	file?											
S15	OI	Verification/Validation Documentation for Methods (NFLAC C	Thanter 5)	Λ										
515		1) Are all the methods used to generate the data decommentation	d verified and validated where											
		applicable?	u, venneu, and vandated, where	Х										
617	OT	approace:												
516	UI	Laboratory Standard Operating Procedures (SUPs):												
		1) Are laboratory SOPs current and on file for each method perform	ned?	Х										
L						1	1							

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

²

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on February 23-26, 2021. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

Lacjum for Bignature 6/18/2021 Date

CLIENT:GolderProject:Sandow CCRLab Order:2106088

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method E300 - Anions Analysis Method M2540C - TDS Analysis

Exception Report R1-01

The samples were received and log-in performed on 6/10/21. A total of 8 samples were received. The samples arrived in good condition and were properly packaged.

Exception Report R7-03

For Anions analysis performed on 6/14/21 (batch 100908) the matrix spikes and/or matrix spike duplicate recoveries (2106039-11 MSD & 2106088-01 MS/MSD) were out of control limits for Fluoride or Sulfate. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate (2106039-11 MS/MSD) was not from this work order. The sample selected for the matrix spike and matrix spike duplicate (2106088-01 MS/MSD) was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 6/15/21 the matrix spike and matrix spike duplicate recoveries were out of control limits for Calcium. This is flagged accordingly. The sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for this analyte. No further corrective actions were taken.

Exception Report S9-01

For Metals analysis performed on 6/15/21 the RPD for the serial dilution was slightly above control limits for Boron. This is flagged accordingly in the QC summary report. The PDS was within control limits for this analyte. No further corrective actions were taken.

CLIENT:GolderProject:Sandow CCRLab Order:2106088

Date: 18-Jun-21

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2106088-01	AX-25R		06/07/21 02:15 PM	6/10/2021
2106088-02	AXMW-2		06/07/21 03:02 PM	6/10/2021
2106088-03	AXMW-1		06/07/21 03:35 PM	6/10/2021
2106088-04	AX-23		06/09/21 09:45 AM	6/10/2021
2106088-05	AX-24		06/09/21 10:33 AM	6/10/2021
2106088-06	AX-26		06/09/21 11:07 AM	6/10/2021
2106088-07	AX-27		06/09/21 11:50 AM	6/10/2021
2106088-08	AX-28		06/09/21 01:10 PM	6/10/2021

Lab Order: 2106088 **Client:** Golder **Project:**

Sandow CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2106088-01A	AX-25R	06/07/21 02:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-25R	06/07/21 02:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-25R	06/07/21 02:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
2106088-01B	AX-25R	06/07/21 02:15 PM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-25R	06/07/21 02:15 PM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-25R	06/07/21 02:15 PM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893
2106088-02A	AXMW-2	06/07/21 03:02 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AXMW-2	06/07/21 03:02 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AXMW-2	06/07/21 03:02 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
2106088-02B	AXMW-2	06/07/21 03:02 PM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AXMW-2	06/07/21 03:02 PM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AXMW-2	06/07/21 03:02 PM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893
2106088-03A	AXMW-1	06/07/21 03:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AXMW-1	06/07/21 03:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AXMW-1	06/07/21 03:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
2106088-03B	AXMW-1	06/07/21 03:35 PM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AXMW-1	06/07/21 03:35 PM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AXMW-1	06/07/21 03:35 PM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893
2106088-04A	AX-23	06/09/21 09:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-23	06/09/21 09:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-23	06/09/21 09:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
2106088-04B	AX-23	06/09/21 09:45 AM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-23	06/09/21 09:45 AM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-23	06/09/21 09:45 AM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893
2106088-05A	AX-24	06/09/21 10:33 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-24	06/09/21 10:33 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-24	06/09/21 10:33 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
2106088-05B	AX-24	06/09/21 10:33 AM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908

Page 1 of 2

Lab Order: 2106088 **Client:** Golder **Project:**

Sandow CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2106088-05B	AX-24	06/09/21 10:33 AM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-24	06/09/21 10:33 AM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893
2106088-06A	AX-26	06/09/21 11:07 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-26	06/09/21 11:07 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-26	06/09/21 11:07 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
2106088-06B	AX-26	06/09/21 11:07 AM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-26	06/09/21 11:07 AM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-26	06/09/21 11:07 AM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893
2106088-07A	AX-27	06/09/21 11:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-27	06/09/21 11:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-27	06/09/21 11:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
2106088-07B	AX-27	06/09/21 11:50 AM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-27	06/09/21 11:50 AM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-27	06/09/21 11:50 AM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893
2106088-08A	AX-28	06/09/21 01:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-28	06/09/21 01:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
	AX-28	06/09/21 01:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/14/21 09:08 AM	100906
2106088-08B	AX-28	06/09/21 01:10 PM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-28	06/09/21 01:10 PM	Aqueous	E300	Anion Preparation	06/14/21 09:37 AM	100908
	AX-28	06/09/21 01:10 PM	Aqueous	E300	Anion Preparation	06/15/21 11:00 AM	100919
	AX-28	06/09/21 01:10 PM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893

Lab Order:2106088Client:Golder

Project: Sandow CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2106088-01A	AX-25R	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:08 PM	ICP-MS5_210615A
	AX-25R	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 04:00 PM	ICP-MS5_210615A
	AX-25R	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:54 PM	ICP-MS4_210615A
2106088-01B	AX-25R	Aqueous	E300	Anions by IC method - Water	100908	100	06/14/21 04:26 PM	IC2_210614A
	AX-25R	Aqueous	E300	Anions by IC method - Water	100908	1	06/15/21 02:02 AM	IC2_210614A
	AX-25R	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B
2106088-02A	AXMW-2	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	2	06/15/21 02:56 PM	ICP-MS4_210615A
	AXMW-2	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:11 PM	ICP-MS5_210615A
	AXMW-2	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 04:02 PM	ICP-MS5_210615A
2106088-02B	AXMW-2	Aqueous	E300	Anions by IC method - Water	100908	100	06/14/21 05:14 PM	IC2_210614A
	AXMW-2	Aqueous	E300	Anions by IC method - Water	100908	1	06/15/21 02:18 AM	IC2_210614A
	AXMW-2	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B
2106088-03A	AXMW-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 04:05 PM	ICP-MS5_210615A
	AXMW-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 02:58 PM	ICP-MS4_210615A
	AXMW-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:13 PM	ICP-MS5_210615A
2106088-03B	AXMW-1	Aqueous	E300	Anions by IC method - Water	100908	100	06/14/21 05:30 PM	IC2_210614A
	AXMW-1	Aqueous	E300	Anions by IC method - Water	100908	1	06/15/21 02:34 AM	IC2_210614A
	AXMW-1	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B
2106088-04A	AX-23	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	2	06/15/21 03:00 PM	ICP-MS4_210615A
	AX-23	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:16 PM	ICP-MS5_210615A
	AX-23	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 04:08 PM	ICP-MS5_210615A
2106088-04B	AX-23	Aqueous	E300	Anions by IC method - Water	100908	10	06/14/21 10:18 PM	IC2_210614A
	AX-23	Aqueous	E300	Anions by IC method - Water	100908	1	06/15/21 02:50 AM	IC2_210614A
	AX-23	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B
2106088-05A	AX-24	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 04:10 PM	ICP-MS5_210615A
	AX-24	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:19 PM	ICP-MS5_210615A
	AX-24	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 03:02 PM	ICP-MS4_210615A
2106088-05B	AX-24	Aqueous	E300	Anions by IC method - Water	100908	100	06/14/21 05:46 PM	IC2_210614A

Page 1 of 2

Lab Order:2106088Client:Golder

Project: Sandow CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2106088-05B	AX-24	Aqueous	E300	Anions by IC method - Water	100908	1	06/15/21 03:06 AM	IC2_210614A
	AX-24	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B
2106088-06A	AX-26	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	2	06/15/21 03:04 PM	ICP-MS4_210615A
	AX-26	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:21 PM	ICP-MS5_210615A
	AX-26	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 04:13 PM	ICP-MS5_210615A
2106088-06B	AX-26	Aqueous	E300	Anions by IC method - Water	100908	100	06/14/21 06:02 PM	IC2_210614A
	AX-26	Aqueous	E300	Anions by IC method - Water	100908	1	06/15/21 04:42 AM	IC2_210614A
	AX-26	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B
2106088-07A	AX-27	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 04:15 PM	ICP-MS5_210615A
	AX-27	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	2	06/15/21 03:06 PM	ICP-MS4_210615A
	AX-27	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:24 PM	ICP-MS5_210615A
2106088-07B	AX-27	Aqueous	E300	Anions by IC method - Water	100908	100	06/14/21 06:18 PM	IC2_210614A
	AX-27	Aqueous	E300	Anions by IC method - Water	100908	1	06/15/21 04:58 AM	IC2_210614A
	AX-27	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B
2106088-08A	AX-28	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:50 PM	ICP-MS4_210615A
	AX-28	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	1	06/15/21 02:03 PM	ICP-MS5_210615A
	AX-28	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100906	50	06/15/21 03:55 PM	ICP-MS5_210615A
2106088-08B	AX-28	Aqueous	E300	Anions by IC method - Water	100908	100	06/14/21 06:34 PM	IC2_210614A
	AX-28	Aqueous	E300	Anions by IC method - Water	100908	1	06/15/21 05:14 AM	IC2_210614A
	AX-28	Aqueous	E300	Anions by IC method - Water	100919	10	06/16/21 02:06 AM	IC2_210615A
	AX-28	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B

DHL Anal	lytical, Inc.		Date: 18-Jun-21								
CLIENT:	Golder		Client Sample ID: AX-25R								
Project:	Sandow CCR				Lal	DID: 21060	88-01				
Project No:	19122262	Collection Date: 06/07/21 02:15 PM									
Lab Order:	2106088	Matrix: AQUEOUS									
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed			
TRACE METALS: ICP-MS - WATER			SW60	20B				Analyst: SP			
Boron		0.213	0.0100	0.0300		mg/L	1	06/15/21 02:54 PM			
Calcium		228	5.00	15.0		mg/L	50	06/15/21 04:00 PM			
ANIONS BY IC	METHOD - WATER	E300					Analyst: BM				
Chloride		355	30.0	100		mg/L	100	06/14/21 04:26 PM			
Fluoride		0.420	0.100	0.400		mg/L	1	06/15/21 02:02 AM			
Sulfate		475	100	300		mg/L	100	06/14/21 04:26 PM			
TOTAL DISSO	LVED SOLIDS		M254	OC				Analyst: JS			
Total Dissolved	I Solids (Residue,	2020	50.0	50.0		mg/L	1	06/14/21 12:10 PM			

Total Dissolved Solids (Residue, Filterable)

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	lytical, Inc.		Date: 18-Jun-21								
CLIENT:	Golder		Client Sample ID: AXMW-2								
Project:	Sandow CCR				La	b ID: 21060	88-02				
Project No:	19122262			Co	llection I	Date: 06/07/	21 03:02 PN	1			
Lab Order:	2106088	Matrix: AQUEOUS									
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed			
TRACE METALS: ICP-MS - WATER		SW6020B						Analyst: SP			
Boron		0.580	0.0200	0.0600		mg/L	2	06/15/21 02:56 PM			
Calcium		449	5.00	15.0		mg/L	50	06/15/21 04:02 PM			
ANIONS BY IC	METHOD - WATER		E30	0			Analyst: BM				
Chloride		131	30.0	100		mg/L	100	06/14/21 05:14 PM			
Fluoride		<0.100	0.100	0.400		mg/L	1	06/15/21 02:18 AM			
Sulfate		1180	100	300		mg/L	100	06/14/21 05:14 PM			
TOTAL DISSO	LVED SOLIDS		M254	0C				Analyst: JS			
Total Dissolved	I Solids (Residue,	2550	50.0	50.0		mg/L	1	06/14/21 12:10 PM			

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	lytical, Inc.		Date: 18-Jun-21								
CLIENT:	Golder		Client Sample ID: AXMW-1								
Project:	Sandow CCR				La	b ID: 21060	88-03				
Project No:	19122262			Co	llection l	Date: 06/07/	/21 03:35 PN	1			
Lab Order:	2106088	Matrix: AQUEOUS									
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed			
TRACE METALS: ICP-MS - WATER		SW6020B						Analyst: SP			
Boron		5.43	0.500	1.50		mg/L	50	06/15/21 02:58 PM			
Calcium		293	5.00	15.0		mg/L	50	06/15/21 04:05 PM			
ANIONS BY IC	METHOD - WATER		E30	0			Analyst: BM				
Chloride		146	30.0	100		mg/L	100	06/14/21 05:30 PM			
Fluoride		<0.100	0.100	0.400		mg/L	1	06/15/21 02:34 AM			
Sulfate		1360	100	300		mg/L	100	06/14/21 05:30 PM			
TOTAL DISSO	LVED SOLIDS		M254	0C				Analyst: JS			
Total Dissolved	d Solids (Residue,	2290	50.0	50.0		mg/L	1	06/14/21 12:10 PM			

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	lytical, Inc.		Date: 18-Jun-21								
CLIENT:	Golder			Clier	nt Samp	le ID: AX-23	3				
Project:	Sandow CCR				La	b ID: 21060	88-04				
Project No:	19122262	Collection Date: 06/09/21 09:45 AM									
Lab Order:2106088Matrix: AQUEOUS											
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed			
TRACE METAI	TRACE METALS: ICP-MS - WATER		SW6020B					Analyst: SP			
Boron		0.335	0.0200	0.0600		mg/L	2	06/15/21 03:00 PM			
Calcium		318	5.00	15.0		mg/L	50	06/15/21 04:08 PM			
ANIONS BY IC	METHOD - WATER		E30	0				Analyst: BM			
Chloride		238	3.00	10.0		mg/L	10	06/14/21 10:18 PM			
Fluoride	Fluoride		0.100	0.400	J	mg/L	1	06/15/21 02:50 AM			
Sulfate		655	10.0	30.0		mg/L	10	06/14/21 10:18 PM			
TOTAL DISSO	LVED SOLIDS		M254	0C				Analyst: JS			

50.0

50.0

mg/L

1720

Total Dissolved Solids (Residue, Filterable)

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

1

06/14/21 12:10 PM

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	lytical, Inc.		Date: 18-Jun-21								
CLIENT:	Golder		Client Sample ID: AX-24								
Project:	Sandow CCR				La	b ID: 21060	88-05				
Project No:	19122262			Co	llection]	Date: 06/09/	/21 10:33 AN	M			
Lab Order:	2106088		Matrix: AQUEOUS								
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed			
TRACE METALS: ICP-MS - WATER			SW60	20B				Analyst: SP			
Boron		0.166	0.0100	0.0300		mg/L	1	06/15/21 03:02 PM			
Calcium		339	5.00	15.0		mg/L	50	06/15/21 04:10 PM			
ANIONS BY IC	METHOD - WATER		E30	0			Analyst: BM				
Chloride		201	30.0	100		mg/L	100	06/14/21 05:46 PM			
Fluoride		<0.100	0.100	0.400		mg/L	1	06/15/21 03:06 AM			
Sulfate		1040	100	300		mg/L	100	06/14/21 05:46 PM			
TOTAL DISSO	LVED SOLIDS		M254	0C			Analyst: JS				
Total Dissolved	Solids (Residue,	2240	50.0	50.0		mg/L	1	06/14/21 12:10 PM			

Oualifiers :	ND - Not Detected at the SDI
Quanners.	The mot bettered at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	lytical, Inc.			Date: 18-Jun-21								
CLIENT:	Golder		Client Sample ID: AX-26									
Project:	Sandow CCR				Lal	DID: 21060	88-06					
Project No:	19122262			Co	llection I	Date: 06/09/	/21 11:07 AN	M				
Lab Order:	2106088	Matrix: AQUEOUS										
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed				
TRACE METALS: ICP-MS - WATER		SW6020B						Analyst: SP				
Boron		0.383	0.0200	0.0600		mg/L	2	06/15/21 03:04 PM				
Calcium		896	5.00	15.0		mg/L	50	06/15/21 04:13 PM				
ANIONS BY IC	METHOD - WATER		E30	0			Analyst: BM					
Chloride		1790	30.0	100		mg/L	100	06/14/21 06:02 PM				
Fluoride		<0.100	0.100	0.400		mg/L	1	06/15/21 04:42 AM				
Sulfate		1120	100	300		mg/L	100	06/14/21 06:02 PM				
TOTAL DISSO	LVED SOLIDS		M254	0C			Analyst: JS					
Total Dissolved	Solids (Residue,	4800	50.0	50.0		mg/L	1	06/14/21 12:10 PM				

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	lytical, Inc.				Da	ate:	18-Jun-21				
CLIENT:	Golder		Client Sample ID: AX-27								
Project:	Sandow CCR				La	b ID: 21060	88-07				
Project No:	19122262			Col	llection l	Date: 06/09/	/21 11:50 AN	M			
Lab Order:	2106088		Matrix: AQUEOUS								
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed			
TRACE METALS: ICP-MS - WATER			20B			Analyst: SP					
Boron		0.307	0.0200	0.0600		mg/L	2	06/15/21 03:06 PM			
Calcium		384	5.00	15.0		mg/L	50	06/15/21 04:15 PM			
ANIONS BY IC	METHOD - WATER		E30	0			Analyst: BM				
Chloride		464	30.0	100		mg/L	100	06/14/21 06:18 PM			
Fluoride		<0.100	0.100	0.400		mg/L	1	06/15/21 04:58 AM			
Sulfate		535	100	300		mg/L	100	06/14/21 06:18 PM			
TOTAL DISSO	LVED SOLIDS		M254	0C				Analyst: JS			
Total Dissolved	d Solids (Residue,	1980	50.0	50.0		mg/L	1	06/14/21 12:10 PM			

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL Anal	ytical, Inc.		Date: 18-Jun-21								
CLIENT:	Golder		Client Sample ID: AX-28								
Project:	Sandow CCR				La	b ID: 21060	88-08				
Project No:	19122262			Co	llection l	Date: 06/09/	21 01:10 PN	1			
Lab Order:	2106088	Matrix: AQUEOUS									
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed			
TRACE METALS: ICP-MS - WATER		SW6020B						Analyst: SP			
Boron		0.188	0.0100	0.0300		mg/L	1	06/15/21 02:50 PM			
Calcium		461	5.00	15.0		mg/L	50	06/15/21 03:55 PM			
ANIONS BY IC	METHOD - WATER	E300					Analyst: BM				
Chloride		80.2	3.00	10.0		mg/L	10	06/16/21 02:06 AM			
Fluoride		<0.100	0.100	0.400		mg/L	1	06/15/21 05:14 AM			
Sulfate		1610	100	300		mg/L	100	06/14/21 06:34 PM			
TOTAL DISSO	LVED SOLIDS		M254	OC				Analyst: JS			
Total Dissolved	I Solids (Residue,	2810	50.0	50.0		mg/L	1	06/14/21 12:10 PM			

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 13

CLIENT: Golder Work Order: 2106088 **Project:** Sandow CCR

ANALYTICAL QC SUMMARY REPORT

ICP-MS4_210428A **RunID:**

Sample ID: DCS4-100323	Batch ID:	100323		TestNo:	5	SW6020B		Units:	mg/	L
SampType: DCS4	Run ID:	ICP-MS4_	210428A	Analysis	s Date: 4	/28/2021 10:39	:00 AM	Prep Date	: 4/27	7/2021
Analyte		Result	RL	SPK value	Ref Va	al %REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron	(0.0310	0.0300	0.0300	0	103	70	130	0	0

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R

- RPD outside accepted control limits
- S Spike Recovery outside control limits

Parameter not NELAP certified Ν

CLIENT:	Golder				AN	[ALYT]	CAL (C SI	IMMAR	V REPOR	S.L.
Work Order	:: 2106088							2000			•••
Project:	Sandow Co	CR					RunII): I	CP-MS4_2	210615A	
The QC data ir 06A, 2106088-	n batch 100906 ap 07A, 2106088-08A	olies to the	following sa	amples: 210	6088-01A, 2106	6088-02A, 2′	106088-03A	, 2106088	3-04A, 210608	38-05A, 2106088	-
Sample ID: M	B-100906	Batch ID:	100906		TestNo	SW6	020B		Units:	mg/L	
SampType: M	BLK	Run ID:	ICP-MS4	_210615A	Analysi	s Date: 6/15 /	/2021 2:42:	00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit	Qual
Boron			<0.0100	0.0300							
Sample ID: LC	CS-100906	Batch ID:	100906		TestNo	SW6	020B		Units:	mg/L	
SampType: L(CS	Run ID:	ICP-MS4	_210615A	Analysi	s Date: 6/15 /	/2021 2:44:	00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit	Qual
Boron			0.201	0.0300	0.200	0	101	80	120		
Sample ID: LC	CSD-100906	Batch ID:	100906		TestNo	SW6	020B		Units:	mg/L	
SampType: L(CSD	Run ID:	ICP-MS4	_210615A	Analysi	s Date: 6/15 /	2021 2:46:	00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit	Qual
Boron			0.206	0.0300	0.200	0	103	80	120	2.50 15	
Sample ID: 21	106088-08A SD	Batch ID:	100906		TestNo	SW6	020B		Units:	mg/L	
SampType: SI	D	Run ID:	ICP-MS4	_210615A	Analysi	s Date: 6/15 /	2021 2:52:	00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit	Qual
Boron			0.235	0.150	0	0.188				21.9 20	R
Sample ID: 21	106088-08A PDS	Batch ID:	100906		TestNo	SW6	020B		Units:	mg/L	
SampType: PI	DS	Run ID:	ICP-MS4	_210615A	Analysi	s Date: 6/15 /	/2021 3:12:(00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit	Qual
Boron			0.351	0.0300	0.200	0.188	81.0	75	125		
Sample ID: 21	106088-08A MS	Batch ID:	100906		TestNo	SW6	020B		Units: mg/L		
SampType: M	S	Run ID:	ICP-MS4	_210615A	Analysi	s Date: 6/15 /	/2021 3:15:	00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit	Qual
Boron			0.382	0.0300	0.200	0.188	97.0	75	125		
Sample ID: 21	106088-08A MSD	Batch ID:	100906		TestNo	SW6	020B		Units:	mg/L	
SampType: M	SD	Run ID:	ICP-MS4	_210615A	Analysi	s Date: 6/15/	/2021 3:17:(00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit	Qual
Boron			0.370	0.0300	0.200	0.188	90.9	75	125	3.25 15	

Qualifiers:

CLIENT:

Golder

- В Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 2 of 13

Ν Parameter not NELAP certified

CLIENT: Work Order: Project:	Golder 2106088 Sandow C	CR			AN	ALYT	ICAL (RunII	QC SU D: IO	MMA CP-MS4	RY R _21061	EPORT
Sample ID: ICV-2	210615	Batch ID:	R115818		TestNo:	SWe	6020B		Units:	mg/L	
SampType: ICV		Run ID:	ICP-MS4	_210615A	Analysis	s Date: 6/15	/2021 11:39	9:00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron			0.104	0.0300	0.100	0	104	90	110		
Sample ID: LCVL	-210615	Batch ID:	R115818		TestNo:	SWe	6020B		Units:	mg/L	
SampType: LCVL	-	Run ID:	ICP-MS4	_210615A	Analysis	s Date: 6/15	/2021 11:49	9:00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron			0.0224	0.0300	0.0200	0	112	80	120		
Sample ID: CCV3	3-210615	Batch ID:	R115818		TestNo:	SWe	6020B		Units:	mg/L	
SampType: CCV		Run ID:	ICP-MS4	_210615A	Analysis	s Date: 6/15	/2021 2:09:	00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron			0.200	0.0300	0.200	0	100	90	110		
Sample ID: CCV4	4-210615	Batch ID:	R115818		TestNo:	SWe	6020B		Units:	mg/L	
SampType: CCV		Run ID:	ICP-MS4	_210615A	Analysis	s Date: 6/15	/2021 3:23:	00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron			0.203	0.0300	0.200	0	102	90	110		

CLIENT:

Golder

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

Page 3 of 13

26

CLIENT:	Golder				ANAL VTICAL OC SUMMARY REPORT									
Work Order:	2106088											. #		
Project:	Sandow	CCR					RunII): I	CP-MS5	_2104	28A			
Sample ID: DCS2-100323 Batch ID:			100323		TestNo: SW6020B				Units:	mg/	mg/L			
SampType: DCS2	Type: DCS2 Run ID:			5_210428A	Analysis Date: 4/28/2021 10:53:00 Al			8:00 AM	M Prep Date: 4/27/2021					
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Q	tual		
Calcium			0.302	0.300	0.300	0	101	70	130	0	0			

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 4 of 13

- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT:	Go	lder	ANAL VTICAL OC SUMMARY REPORT										
Work Ord	ler: 21	06088				1.1							
Project:	Sa	ndow Co	CR					RunII	D: I	CP-MS5_2	210615 A	4	
The QC data 06A, 210608	a in batch 10 88-07A, 2106	0906 app 6088-08A	plies to the	following sa	amples: 210	6088-01A, 210	6088-02A, 2 ⁻	106088-03A	A, 2106088	8-04A, 21060	88-05A, 2	106088	}-
Sample ID:	MB-100906		Batch ID:	100906		TestNo	: SW6	6020B		Units:	mg/L		
SampType:	MBLK		Run ID:	ICP-MS5	_210615A	Analys	is Date: 6/15	/2021 3:44:	00 PM	Prep Date:	6/14/20	21	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit	Qual
Calcium				<0.100	0.300								
Sample ID:	LCS-10090	6	Batch ID:	100906		TestNo	: SW6	6020B		Units:	mg/L		
SampType:	LCS		Run ID:	ICP-MS5	_210615A	Analys	is Date: 6/15	/2021 3:47:	00 PM	Prep Date:	6/14/20	21	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit	Qual
Calcium				4.47	0.300	5.00	0	89.4	80	120			
Sample ID:	LCSD-1009	06	Batch ID:	100906		TestNo	: SW6	6020B		Units:	mg/L		
SampType:	LCSD		Run ID: ICP-MS5_210615A			Analys	is Date: 6/15	00 PM	Prep Date:	6/14/20	21		
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit	Qual
Calcium				4.67	0.300	5.00	0	93.5	80	120	4.47	15	
Sample ID:	2106088-08	A SD	Batch ID:	100906		TestNo	: SW6	6020B		Units:	mg/L		
SampType:	SD		Run ID:	ICP-MS5	_210615A	Analys	is Date: 6/15	/2021 3:57:	00 PM	Prep Date:	6/14/20	21	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit	Qual
Calcium				481	75.0	0	461				4.20	20	
Sample ID:	2106088-08	A PDS	Batch ID:	100906		TestNo: SW6020B				Units: mg/L			
SampType:	PDS		Run ID:	ICP-MS5	_210615A	Analys	Analysis Date: 6/15/2021 4:18:00 PM				Prep Date: 6/14/2021		
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RP	DLimit	Qual
Calcium				752	15.0	250	461	116	75	125			
Sample ID:	2106088-08	AMS	Batch ID:	100906		TestNo	: SW6	6020B		Units:	mg/L		
SampType:	MS		Run ID:	ICP-MS5	_210615A	Analys	is Date: 6/15	/2021 4:21:	00 PM	Prep Date:	6/14/20	21	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RP	DLimit	Qual
Calcium				463	15.0	5.00	461	39.7	75	125			S
Sample ID:	2106088-08	AMSD	Batch ID:	100906		TestNo	swe	6020B		Units:	mg/L		
SampType:	MSD		Run ID:	ICP-MS5	_210615A	Analys	is Date: 6/15	/2021 4:23:	00 PM	Prep Date:	6/14/20	21	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RP	DLimit	Qual
Calcium				460	15.0	5.00	461	-36.5	75	125	0.825	15	S

Qualifiers:

CLIENT:

Golder

- В Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 5 of 13

Ν Parameter not NELAP certified

CLIENT: Work Order: Project:	Golder 2106088 Sandow C	CR			AN	ALYT	ICAL (RunII	QC SU D: IO	MMA CP-MS5	RY F _21061	REPORT 15A
Sample ID: ICV-2	10615	Batch ID:	R115817	7	TestNo	: SWe	6020B		Units:	mg/L	-
SampType: ICV		Run ID:	ICP-MS	5_210615A	Analysi	s Date: 6/15	/2021 10:48	3:00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Calcium			2.45	0.300	2.50	0	97.9	90	110		
Sample ID: LCVL	-210615	Batch ID:	R115817	7	TestNo	: SWe	6020B		Units:	mg/L	-
SampType: LCVL		Run ID:	ICP-MS	5_210615A	Analysi	s Date: 6/15	/2021 10:54	1:00 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Calcium			0.109	0.300	0.100	0	109	80	120		
Sample ID: CCV4	-210615	Batch ID:	R115817	7	TestNo	6020B		Units:	mg/L	-	
SampType: CCV		Run ID:	ICP-MS	5_210615A	Analysi	Analysis Date: 6/15/2021 3:28:00 F			Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Calcium			5.05	0.300	5.00	0	101	90	110		
Sample ID: CCV5	-210615	Batch ID:	R115817	7	TestNo	: SWe	6020B		Units:	mg/L	-
SampType: CCV		Run ID:	ICP-MS	5_210615A	Analysis Date: 6/15/2021 4:26:00			00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Calcium			5.14	0.300	5.00	0	103	90	110		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RL Reporting Limit S J

Analyte detected between SDL and RL

CLIENT:

Golder

RPD outside accepted control limits

Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 6 of 13

CLIENT: Work Order:	Golder 2106088				ANALYTICAL QC SUMMARY REP						
Project:	CCR					RunII): I	IC2_210527A			
Sample ID: DCS3-100738		Batch ID:	100738		TestNo	E300)		Units:	mg/	L
SampType: DCS3		Run ID:	IC2_210)527A	Analys	is Date: 5/27	/2021 4:13:	05 PM	Prep Date	5/27	//2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			1.25	1.00	1.000	0	125	70	130	0	0
Fluoride			0.408	0.400	0.4000	0	102	70	130	0	0
Sulfate			3.03	3.00	3.000	0	101	70	130	0	0

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 7 of 13

S Spike Recovery outside control limits

N Parameter not NELAP certified

Project:	Sandow C	CR					RunII): I	C2_21061	4A		
The QC dat 06B, 21060	a in batch 100908 ap 88-07B, 2106088-08l	plies to the B	e following s	amples: 210	6088-01B, 2106	6088-02B, 210	06088-03E	8, 210608	8-04B, 21060	088-05B,	2106088	8-
Sample ID:	MB-100908	Batch ID:	100908		TestNo:	E300			Units:	mg/L		
SampType:	MBLK	Run ID:	IC2_210	0614A	Analysis	s Date: 6/14/2	2021 11:51	:44 AM	Prep Date:	6/14/2	:021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	Qual
Chloride			<0.300	1.00								
Fluoride			<0.100	0.400								
Sulfate			<1.00	3.00								
Sample ID:	LCS-100908	Batch ID:	100908		TestNo:	E300			Units:	mg/L		
SampType:	LCS	Run ID:	IC2_210	0614A	Analysis	s Date: 6/14/2	2021 12:07	':44 PM	Prep Date:	6/14/2	:021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	Qual
Chloride			9.25	1.00	10.00	0	92.5	90	110			
Fluoride			3.91	0.400	4.000	0	97.6	90	110			
Sulfate			29.7	3.00	30.00	0	99.0	90	110			
Sample ID:	LCSD-100908	Batch ID:	100908		TestNo:	E300			Units:	mg/L		
SampType:	LCSD	Run ID:	IC2_210	0614A	Analysis	s Date: 6/14/2	2021 12:23	3:44 PM	Prep Date:	6/14/2	:021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	Qual
Chloride			9.26	1.00	10.00	0	92.6	90	110	0.117	20	
Fluoride			3.89	0.400	4.000	0	97.2	90	110	0.418	20	
Sulfate			29.6	3.00	30.00	0	98.5	90	110	0.489	20	
Sample ID:	2106039-11AMS	Batch ID:	100908		TestNo:	E300			Units:	mg/L		
SampType:	MS	Run ID:	IC2_210	0614A	Analysis	s Date: 6/14/2	2021 3:54:	01 PM	Prep Date:	6/14/2	:021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit	Qual
Chloride			2410	100	2000	226.9	109	90	110			
Fluoride			2200	40.0	2000	0	110	90	110			
Sulfate			4550	300	2000	2758	89.7	90	110			
Sample ID:	2106039-11AMSD	Batch ID:	100908		TestNo:	E300			Units:	mg/L		
SampType:	MSD	Run ID:	IC2_210	0614A	Analysis	s Date: 6/14/2	2021 4:10:	01 PM	Prep Date:	6/14/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD R	PDLimit	Qual
Chloride			2420	100	2000	226.9	109	90	110	0.456	20	
Fluoride			2210	40.0	2000	0	111	90	110	0.356	20	S
Sulfate			4560	300	2000	2758	90.0	90	110	0.115	20	

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

> J Analyte detected between SDL and RL

CLIENT:

Work Order:

Golder

2106088

Page 8 of 13

ANALYTICAL QC SUMMARY REPORT

Ν Parameter not NELAP certified
CLIENT: Work Order:	Golder 2106088				AN	ALYT	ICAL (QC S	SUMMA	RY REPO)RT
Project:	Sandow (CCR					RunII	D:	IC2_21062	14A	
Sample ID: 21060	88-01BMS	Batch ID:	100908		TestNo:	E300)		Units:	mg/L	
SampType: MS		Run ID:	IC2_210	0614A	Analysis	s Date: 6/14	/2021 4:42:	02 PM	Prep Date	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLi	imit HighLimit	%RPD RPDLim	it Qual
Chloride			2320	100	2000	354.9	98.4	90	110		
Fluoride			1990	40.0	2000	0	99.3	90	110		
											-

Sulfate		2210	300	2000	475.1	86.9	90	110			S
Sample ID: 2106088-01BMSD	Batch ID:	100908		TestNo	: E30	D		Units:	mg/l	_	
SampType: MSD	Run ID:	IC2_210	614A	Analys	s Date: 6/14	/2021 4:58:	02 PM	Prep Date	e: 6/14	/2021	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimi	it Qua
Chloride		2330	100	2000	354.9	98.7	90	110	0.286	20	
Fluoride		1990	40.0	2000	0	99.4	90	110	0.120	20	
Sulfate		2210	300	2000	475.1	86.5	90	110	0.329	20	S

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

- J Analyte detected between SDL and RL
- DF Dilution Factor

MDL Method Detection Limit

- R RPD outside accepted control limits
- S Spike Recovery outside control limits

Ν Parameter not NELAP certified Page 9 of 13

Project:	Sa	ndow CCR						RunII): I	C2_2106	14A	
Sample ID:	ICV-21061	Batch I	D: R	115795		TestNo:	E300			Units:	mg/L	-
SampType:	ICV	Run ID	: 10	C2_21061	4A	Analysis	s Date: 6/14/2	021 11:19	:44 AM	Prep Date	:	
Analyte			Re	sult	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			24	4.7	1.00	25.00	0	98.7	90	110		
Fluoride			10).1	0.400	10.00	0	101	90	110		
Sulfate			77	7.8	3.00	75.00	0	104	90	110		
Sample ID:	CCV1-210	314 Batch I	D: R	115795		TestNo:	E300			Units:	mg/L	-
SampType:	CCV	Run ID	: 10	C2_21061	4A	Analysis	s Date: 6/14/2	021 8:10:	01 PM	Prep Date	:	
Analyte			Re	sult	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			9.	33	1.00	10.00	0	93.3	90	110		
Fluoride			4.	03	0.400	4.000	0	101	90	110		
Sulfate			30).1	3.00	30.00	0	100	90	110		
Sample ID:	CCV2-210	314 Batch I	D: R	115795		TestNo:	E300			Units:	mg/L	-
SampType:	CCV	Run ID	: 10	C2_21061	4A	Analysis	s Date: 6/15/2	021 12:10	:01 AM	Prep Date	:	
Analyte			Re	sult	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			9.	29	1.00	10.00	0	92.9	90	110		
Fluoride			3.	97	0.400	4.000	0	99.3	90	110		
Sulfate			29	9.8	3.00	30.00	0	99.2	90	110		
Sample ID:	CCV3-210	314 Batch I	D: R	115795		TestNo:	E300			Units:	mg/L	-
SampType:	CCV	Run ID	: 10	C2_21061	4A	Analysis	s Date: 6/15/2	021 4:10:	01 AM	Prep Date	:	
Analyte			Re	sult	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Fluoride			4.	00	0.400	4.000	0	100	90	110		
Sample ID:	CCV4-210	Batch I	D: R	115795		TestNo:	E300			Units:	mg/L	-
SampType:	ccv	Run ID	: 10	C2_21061	4A	Analysis	s Date: 6/15/2	021 6:18:	01 AM	Prep Date	c	
Analyte			Re	sult	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Fluoride			4.	04	0.400	4.000	0	101	90	110		

Qualifiers:

CLIENT:

Work Order:

Golder

2106088

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND

- Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits
- S Spike Recovery outside control limits

Ν Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Page 10 of 13

CLIENT: C	Golder				AN	ALYTI	CAL O	C SU	MMAR	RY R	EPORT
Work Order: 2	2106088						D ID.	T	72 210/1	- •	
Project: S	Sandow CCR	4 - 4		laa: 0100	000 000		RunID:	10	2_21061	5A	
	100919 applies	to the f	ollowing samp	ies: 2106	U88-U8B				11-20-		
Sample ID: MB-1009	19 Bat		100919		l estino:	E300	04 7.40.40		Units:	mg/L	004
Samprype: MBLK	Ku	n iD:	IC2_2106154	4	Analysis	Date: 6/15/20	JZ1 7:42:19	PIN	Prep Date:	6/15/2	021
Analyte		F	Result	RL	SPK value	Ref Val	%REC L	_owLimit	: HighLimit %	6RPD R	PDLimit Qual
Chloride		<	0.300	1.00							
Sample ID: LCS-1009	919 Bat	tch ID:	100919		TestNo:	E300			Units:	mg/L	
SampType: LCS	Rur	n ID:	IC2_2106154	4	Analysis	Date: 6/15/20	021 7:58:19	PM	Prep Date:	6/15/2	021
Analyte		F	Result	RL	SPK value	Ref Val	%REC L	_owLimit	HighLimit %	6RPD R	PDLimit Qual
Chloride			9.06	1.00	10.00	0	90.6	90	110		
Sample ID: LCSD-10	0919 Bat	tch ID:	100919		TestNo:	E300			Units:	mg/L	
SampType: LCSD	Rur	n ID:	IC2_2106154	4	Analysis	Date: 6/15/20	021 8:14:20	PM	Prep Date:	6/15/2	021
Analyte		F	Result	RL	SPK value	Ref Val	%REC L	_owLimit	HighLimit %	6RPD R	PDLimit Qual
Chloride			9.03	1.00	10.00	0	90.3	90	110	0.309	20
Sample ID: 2106090-	01BMS Bat	tch ID:	100919		TestNo:	E300			Units:	mg/L	
SampType: MS	Rur	n ID:	IC2_2106154	4	Analysis	Date: 6/15/20	021 8:46:20	PM	Prep Date:	6/15/2	021
Analyte		F	Result	RL	SPK value	Ref Val	%REC L	_owLimit	HighLimit %	6RPD R	PDLimit Qual
Chloride			2060	100	2000	152.3	95.4	90	110		
Sample ID: 2106090-	01BMSD Bat	tch ID:	100919		TestNo:	E300			Units:	mg/L	
SampType: MSD	Rur	n ID:	IC2_2106154	4	Analysis	Date: 6/15/20)21 9:02:19	PM	Prep Date:	6/15/2	021
Analyte		F	Result	RL	SPK value	Ref Val	%REC L	_owLimit	HighLimit %	6RPD R	PDLimit Qual
Chloride			2010	100	2000	152.3	92.9	90	110	2.42	20
Sample ID: 2106091-	01BMS Bat	tch ID:	100919		TestNo:	E300			Units:	mg/L	
SampType: MS	Rur	n ID:	IC2_2106154	4	Analysis	Date: 6/16/20)21 1:34:19	AM	Prep Date:	6/15/2	021
Analyte		F	Result	RL	SPK value	Ref Val	%REC L	_owLimit	HighLimit %	6RPD R	PDLimit Qual
Chloride			2130	100	2000	244.6	94.4	90	110		
Sample ID: 2106091-	01BMSD Bat	tch ID:	100919		TestNo:	E300			Units:	mg/L	
SampType: MSD	Rur	n ID:	IC2_2106154	4	Analysis	Date: 6/16/20	021 1:50:19	AM	Prep Date:	6/15/2	021
Analyte		F	Result	RL	SPK value	Ref Val	%REC L	_owLimit	HighLimit %	6RPD R	PDLimit Qual
Chloride			2130	100	2000	244.6	94.1	90	110	0.354	20

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Analyte detected between MDL and RL MDL Method Detection Limit J Page 11 of 13 ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

CLIENT: Work Order:	Golder 2106088				AN	ALYTI	CAL (QC SU	J MMAI	RY R	EPORT
Project:	Sandow CO	CR					RunID): I	C2_21061	5A	
Sample ID: ICV-21	0615	Batch ID:	R115816		TestNo:	E300			Units:	mg/L	
SampType: ICV		Run ID:	IC2_210615	A	Analysis	Date: 6/15/2	021 7:10:1	19 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit '	%RPD F	RPDLimit Qual
Chloride			24.3	1.00	25.00	0	97.4	90	110		
Sample ID: CCV1-2	210615	Batch ID:	R115816		TestNo:	E300			Units:	mg/L	
SampType: CCV		Run ID:	IC2_210615	A	Analysis	Date: 6/16/2	021 12:30	:19 AM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD F	RPDLimit Qual
Chloride			9.16	1.00	10.00	0	91.6	90	110		
Sample ID: CCV2-2	210615	Batch ID:	R115816		TestNo:	E300			Units:	mg/L	
SampType: CCV		Run ID:	IC2_210615	A	Analysis	Date: 6/16/2	021 5:02:1	19 AM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD F	RPDLimit Qual
Chloride			9.25	1.00	10.00	0	92.5	90	110		

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 12 of 13

S Spike Recovery outside control limits

N Parameter not NELAP certified

35

CLIENT:	Golder				ΔΝ		ICAL (DC SI	IMMAR	V RFF	ORT
Work Order:	2106088										
Project:	Sandow C	CR					RunII	D: V	VC_21061	4B	
The QC data in bat 06B, 2106088-07B	ch 100893 ap , 2106088-08E	plies to the 3	e following s	amples: 210	6088-01B, 2106	6088-02B, 2	106088-03E	8, 2106088	8-04B, 21060	88-05B, 210)6088-
Sample ID: MB-10	0893	Batch ID:	100893		TestNo:	M25	540C		Units:	mg/L	
SampType: MBLK		Run ID:	WC_210	0614B	Analysis	s Date: 6/14	/2021 12:10):00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	%RPD RPD	Limit Qual
Total Dissolved So	ids (Residue,	Filtera	<10.0	10.0							
Sample ID: LCS-1	00893	Batch ID:	100893		TestNo:	M25	540C		Units:	mg/L	
SampType: LCS		Run ID:	WC_210	0614B	Analysis	s Date: 6/14	/2021 12:10):00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPD	Limit Qual
Total Dissolved So	lids (Residue,	Filtera	759	10.0	745.6	0	102	90	113		
Sample ID: 21060	88-01B-DUP	Batch ID:	100893		TestNo:	M25	540C		Units:	mg/L	
SampType: DUP		Run ID:	WC_210	0614B	Analysis	s Date: 6/14	/2021 12:10	0:00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPD	Limit Qual
Total Dissolved Sol	lids (Residue,	Filtera	2010	50.0	0	2015				0.248	5
Sample ID: 21060	88-02B-DUP	Batch ID:	100893		TestNo:	M25	540C		Units:	mg/L	
SampType: DUP		Run ID:	WC_210	0614B	Analysis	s Date: 6/14	/2021 12:10	0:00 PM	Prep Date:	6/14/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	%RPD RPD	Limit Qual
Total Dissolved So	lids (Residue,	Filtera	2460	50.0	0	2550				3.59	5

CLIENT:

Golder

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 13 of 13
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	U
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

CLIENT: Golder Work Order: 2106088 Project: Sandow CCR

TestNo: E300 MDL MQL Analyte mg/L mg/L Chloride 0.300 1.00 Fluoride 0.100 0.400 Sulfate 1.00 3.00 TestNo: SW6020B MDL MQL Analyte mg/L mg/L 0.0100 0.0300 Boron Calcium 0.100 0.300 TestNo: M2540C MDL MQL Analyte mg/L mg/L Total Dissolved Solids (Residue, Filt 10.0 10.0

MQL SUMMARY REPORT

June 21, 2021

Will Vienne Golder 2201 Double Creek Dr #4004 Round Rock, Texas 78664 TEL: (512) 671-3434 FAX (512) 671-3446 RE: Sandow CCR

Order No.: 2106091

Dear Will Vienne:

DHL Analytical, Inc. received 1 sample(s) on 6/11/2021 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-21-27

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 2106091	
WorkOrderSampleSummary 2106091	
PrepDatesReport 2106091	
AnalyticalDatesReport 2106091	
Analytical Report 2106091	
AnalyticalQCSummaryReport 2106091	
MQLSummaryReport 2106091	

	<u>Р</u>			230 F	0 Double (Phone (51)	Cree 2) 38	k D 38-4 الا E-N	Dr. 822 Neb Mail	Ra 2 0: W 2: W	our F/ wv gin(nd AX (v.d @ d	Roc (512 nlan nlan	:k, T) 2) 38 nalyti nalyti	< 78 38-8 i cal. i cal.	664 229 con	1 Ə (1	n		P						Cŀ	47	1 	v∘ N	6 -(9776 OF-CUSTOE	DY
CLIENT: Golder ADDRESS: 2201 D PHONE: 512 67 DATA REPORTED TO: ADDITIONAL REPORT	Ass 016 134 001	ociatez le Cree 134 F Vienne ESTO:			<u>Sarvis</u>								DAT PO # PRO CLEI	E: 6 #: JECT	р// Г LC RO.		2 , rioi r #:	1 N 0 191	R N A	AMI Z]DH Sai Z	IL V Nel	/OR ഗ്ര	د K C ح C	ORD C	ER C	#: 6 R :TO	2 R:	PAGE OF 106091 J-Jams	
Authorize 5% surcharge for TRRP Report? Yes No	S=SC W=W A=AI L=LIC SE=S	DIL P VATER S IR C QUID S EEDIMENT	P=PAIN L=SLU D=OTH O=SO	IT JDGE IER LID		ontainers	PRI	ESEI			ESERVED X		35%									C C C C C C C C C C C C C C C C C C C		14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					10/5/5/00 10/5/00/00		
Field Sample I.D.	DHL Lab #	Date	Time	Matrix	Container Type	# of C	F	HNO ³	H ₂ SO	╝	UNPR	AN S	Ĭ Ĭ Ĭ ~ [~]													$\sum_{i=1}^{n}$		de la construcción de la constru	X ./	FIELD NOTES	
Ax-29	01	6/10/21	1130	ω	P	Z		1		X	Ì	1		Ĺ			_			_	_				-		X				
																	_			_		_									
							_	\rightarrow						\vdash						+	_		-		+		-	-+			
				<u> </u>				\neg				\neg									╈				╈	\uparrow	╡				
										_		+					-+			\downarrow	+	+	+		+	_	+				
								+		+		+	_					-+		+	+		+		+	+					
								\square																							
			<u> </u>	ļ		$\left \right $		\square			-+		_					-+		+	_	_	+	_			+				
			, Distanti ya kata wa sa						-+																		-	\dashv			
RELINQUISHED By: (Signature)		1 1.	DATE/		RECEIVE	-BY	Sign	ature					I	- -	TUR	N A	ROL	JND	TIM	E	LAE	BOR		DRY	US	E O	NĽŽ	 Y:			
RELINQUIL HEP BY: (Signature)		6///	DATE/	TIME	RECEIVE	D BY: (Sign	ature)								CAL	L FI	RST		REC	EIV	ING	TEN	ЛР: ¹	5.	2		Τ	HERM #: 78	
RELINQUISHED BY: (Signature)			DATE/	TIME	RECEIVE	D BY: (Sign	ature)					-2	2 DA		CAI	r	1131		CUS CAF	STO RRIE	DY : R:		ls: Lon		BR(TAR	OKI ≀ ∣	EN D F	EDEX UPS OTH	ED ER
		DHL DISPO	SAL @ \$	5.00 ea	ch 🗆 I	Returi	n					3			IOR DTH	MAL ER C	ີ 🕉				⊐c)×i⊦	OU IAN	RIEF D D	R DE	LIVI /ERE	ERY ED			Ľ)HL COC Rev 1 1 775 2010	

Well ID	Top of	Bottom	Total	Depth to	pump	dedicated	Analysis
	Screen	of Screen	Depth	water		tubing?	
LMW-1	20	30	30	18.48	peri	yes	B, Se, SO4
LMW-2	23	33	33	21.91	peri	yes	B, Se, SO4
LMW-3	17	32	32	12.68	peri	yes	B, Se, SO4
LMW-4	41	61	61	16.33	peri	yes	B, Se, SO4
LMW-5	15	30	30	7.66	peri	yes	B, Se, SO4
LMW-6R	20	35	35	3.77	peri	yes	B, Se, SO4
LMW-7R	25	40	40	20.45	peri	yes	B, Se, SO4
LMW-8R	20	30	30	19.65	peri	yes	B, Se, SO4
LMW-9	20	30	30	12.31	peri	yes	B, Se, SO4
PC-MW-8	16.7	26.7	27	12.67	peri	yes	B, Se, SO4

A1 Landfill – PO# 19122450 – boron, selenium, sulfate – use filter for boron and selenium

AX Landfill – Multiple POs, multiple analyses – don't use filter for Appendix III, use filter for bo	oron and
selenium	

Well ID	Top of	Bottom of	Total	pump	dedicated	Analysis	РО
	Screen	Screen	Depth		tubing?		
AX-23	65	85	85	bladder	yes	App III	19122262
AX-24	60	80	80	bladder	yes	App III	19122262
AX-25R	60	70	70	peri	yes	App III	19122262
AX-26	55	75	75	bladder	yes	App III	19122262
AX-27	78	98	98	bladder	yes	App III	19122262
AX-28	25	45	45	bladder	yes	App III	19122262
AX-29	45	65	65	bladder	yes	App III	19122262
	33	53	53	bladder	yes	App III	19122262
AVIAIA-T						B, Se, SO4	19122450
	43	63	63	bladder	yes	App III	19122262
AVIA1A7						B, Se, SO4	19122450
AX-16	122	142	142	?	?	B, Se, SO4	19122450
AX-22	115	135	135	?	?	B, Se, SO4	19122450

*Appendix III – boron, calcium, chloride, fluoride, sulfate, TDS

Well ID	Top of	Bottom	Total	Depth to	pump	Tubing	dedicated	Analysis
	Screen	of Screen	Depth	Water		Intake	tubing?	
CSL-MW-13R	44.7	54.7	55	31.93	sub	50	no	B, Se, SO4
CSL-MW-18	34	44	50.5	32.18	sub	40	no	B, Se, SO4
CSL-MW-19	46	56	58	55.97	sub	50	no	B, Se, SO4
CSL-MW-20	49	59	60	54.88	sub	45	no	B, Se, SO4
CSL-MW-21	48	58	59.5	47.82	sub	63	no	B, Se, SO4
CSL-MW-23	35.8	55.8	56	32.57	sub	45	no	B, Se, SO4
CSL-MW-26R	85	90	95	30.69	sub	92	no	B, Se, SO4
CSL-MW-31	44.5	54.5	55	46.38	sub	50	no	B, Se, SO4
CSL-MW-34	141.5	151.5	152	122.98	sub	146	no	B, Se, SO4
CSL-MW-35	139.5	149.5	150	121.54	sub	145	no	B, Se, SO4
C-1	34.8	44.8	45	17.95	peri	40	?	B, Se, SO4
C-2	49.8	59.8	60	12.95	peri	55	?	B, Se, SO4
C-3	52.8	62.8	63	34.14	sub	58	no	B, Se, SO4
CL2-MW-4	14.5	24.5	25	8.86	peri	20	?	B, Se, SO4
CL2-MW-5	9.5	19.5	20	4.93	peri	15	?	B, Se, SO4
CL2-MW-6	39.5	49.5	50	28.54	sub	45	no	B, Se, SO4
PC-MW-2	25	35	35	22.84	peri	30	?	B, Se, SO4
PC-MW-4	148.1	158.1	160	136.89	sub	153	no	B, Se, SO4

SO2 Ponds – PO# 19122450 – boron, selenium, sulfate – use filter for boron and selenium

	Sample	Receipt Check	klist		
Client Name Golder			Date Recei	ved: 6/11/2	021
Work Order Number 2106091			Received by	/: RA	
Checklist completed by:	6/11/202	1	Reviewed by	y (1)2	6/11/2021
Signature	Date			Initiats	Date
	Carrier name:	Hand Delivered			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shippping container/coo	ler?	Yes 🗌	No 🗌	Not Present 🗹	
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	Νο		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	Νο		
All samples received within holding time?		Yes 🗹	No 🗌		
Container/Temp Blank temperature in complian	ce?	Yes 🗹	No 🗌	5.2 °C	
Water - VOA vials have zero headspace?		Yes	Νο	No VOA vials submit	ted 🗹
Water - pH<2 acceptable upon receipt?		Yes 🗹	No 🗌	NA 🗌 LOT #	13171
		Adjusted?	•	Checked by	L
Water - ph>9 (S) or ph>10 (CN) acceptable upo	n receipt?	Yes	Νο	NA 🗹 LOT #	
		Adjusted?		Checked by	
Any No response must be detailed in the comm	ents section below.				
Client contacted:	Date contacted:		Per	son contacted	
Contacted by:	Regarding:				
Comments:					
Corrective Action:					

.

Lab	orat	tory Name: DHL Analytical, Inc.						
Lab	orat	tory Review Checklist: Reportable Data						
Proje	ect Na	me: Sandow CCR LRC	Date: 6/21/21					
Revie	ewer I	Name: Carlos Castro Labo	ratory Work Order: 2106091					
Prep	Batcl	h Number(s): See Prep Dates Report Run I	Batch: See Analytical Dates Report					
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
		Chain-of-Custody (C-O-C)						
R1	OI	1) Did samples meet the laboratory's standard conditions of samp	le acceptability upon receipt?	Х				R1-01
		2) Were all departures from standard conditions described in an ex	xception report?			Χ		
R2	OI	Sample and Quality Control (QC) Identification						
		1) Are all field sample ID numbers cross-referenced to the laborat	tory ID numbers?	Χ				
		2) Are all laboratory ID numbers cross-referenced to the correspondence	nding QC data?	Χ				
R3	OI	Test Reports		N				
		1) Were all samples prepared and analyzed within holding times? 2) Other then these results $\leq MOL$ were all other row values have	lated by colibration standards?	X				
		2) Other than those results < MQL, were all other raw values brac	cketed by calibration standards?	A V				
		4) Were all analyte identifications checked by a peer or supervisor?	r	A V				
		5) Were sample detection limits reported for all analytes not detect	nted?	X				
		6) Were all results for soil and sediment samples reported on a dry	v weight basis?	1		X		
		7) Were % moisture (or solids) reported for all soil and sediment	samples?			X		
		8) Were bulk soils/solids samples for volatile analysis extracted w	vith methanol per EPA Method 5035?			Χ		
		9) If required for the project, TICs reported?	-			Χ		
R4	0	Surrogate Recovery Data						
		1) Were surrogates added prior to extraction?			Χ			
		2) Were surrogate percent recoveries in all samples within the lab	oratory QC limits?			Χ		
R5	OI	Test Reports/Summary Forms for Blank Samples		N.Y.				
		1) Were appropriate type(s) of blanks analyzed?		X				
		2) Were blanks analyzed at the appropriate frequency?	as including proposition and if	Х				
		applicable cleanup procedures?	ss, including preparation and, if	Х				
		4) Were blank concentrations < MDL?		X				
		5) For analyte(s) detected in a blank sample, was the concentration	n, unadjusted for sample specific					
		factors, in all associated field samples, greater than 10 times the	concentration in the blank sample?			Х		
R6	OI	Laboratory Control Samples (LCS):						
		1) Were all COCs included in the LCS?		Χ				
		2) Was each LCS taken through the entire analytical procedure, in	ncluding prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?		X				
		4) Were LCS (and LCSD, if applicable) %Rs within the laborator	y QC limits?	Х				
		to calculate the SDI s?	y to detect the COCs at the MDL used	Х				
		6) Was the LCSD RPD within OC limits (if applicable)?		X				
R7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data						
		1) Were the project/method specified analytes included in the MS	and MSD?	Χ				
		2) Were MS/MSD analyzed at the appropriate frequency?		Χ				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?		Χ			R7-03
		4) Were MS/MSD RPDs within laboratory QC limits?		Χ				
R8	OI	Analytical Duplicate Data	2					
		1) Were appropriate analytical duplicates analyzed for each matrix	x?	X				
		2) Were analytical duplicates analyzed at the appropriate frequence 3) Were PRDs or relative standard deviations within the laborator	cy /	X				
R0	OI	S) were KFDs of relative standard deviations within the faborator Method Quantitation Limits (MQLs):	y QC minits?	Λ				
		1) Are the MOLs for each method analyte included in the laborate	orv data package?	X				
		2) Do the MOLs correspond to the concentration of the lowest not	n-zero calibration standard?	X				
		3) Are unadjusted MQLs and DCSs included in the laboratory dat	ta package?	X				
R10	OI	Other Problems/Anomalies	-					
		1) Are all known problems/anomalies/special conditions noted in	this LRC and ER?	Χ				
		2) Was applicable and available technology used to lower the SDI	L to minimize the matrix interference	x		_		
		affects on the sample results?						
		3) Is the laboratory NELAC-accredited under the Texas Laborator analytes, matrices and methods associated with this laboratory dat	ry Accreditation Program for the ta package?	X				

Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Supporting D	ata					
Proje	ct Na	ame: Sandow CCR LRC Da	ate: 6/21/21					
Revie	wer	Name: Carlos Castro Labora	tory Work Order: 2106091					
Prep	Batc	h Number(s): See Prep Dates Report Run Ba	tch: See Analytical Dates Report					
#1	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
S1	OI	Initial Calibration (ICAL)						
		1) Ware response factors and/or relative response factors for each and	late within OC limits?	v				
		2) Were percent RSDs or correlation coefficient criteria met?	ityte within QC mints?					
		3) Was the number of standards recommended in the method used for	all analytes?	X				
		4) Were all points generated between the lowest and highest standard	used to calculate the curve?	X				
		5) Are ICAL data available for all instruments used?		X				
		6) Has the initial calibration curve been verified using an appropriate	second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV)	and Continuing Calibration					
		blank (CCB):	8					
		1) Was the CCV analyzed at the method-required frequency?		Χ				
		2) Were percent differences for each analyte within the method-requi	red QC limits?	Χ				
		3) Was the ICAL curve verified for each analyte?		Χ				
		4) Was the absolute value of the analyte concentration in the inorgani	c CCB < MDL?	Χ				
S3	0	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		Χ				
		2) Were ion abundance data within the method-required QC limits?		Χ				
S4	0	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-require	d QC limits?	X				
S 5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data) rev	newed by an analyst?	<u>X</u>				
		2) Were data associated with manual integrations flagged on the raw	data?	X				
<u>86</u>	0	Dual Column Confirmation	<u></u>			N		
07	0	1) Did dual column confirmation results meet the method-required Q	U?			X		
57	0	1) If TICs many as an effect of an end of the second secon	* *			v		
60	т	1) If Thes were requested, were the mass spectra and The data subject	t to appropriate checks?			Λ		
50	1	1) Were percent recoveries within method OC limits?		v				
59	T	Serial Dilutions Post Digestion Spikes and Method of Standard	Additions	Λ				
57	1	1) Were report differences recoveries and the linearity within	the OC limits specified in the					
		method?	the QC minus specified in the		X			S9-01
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		Х				
		2) Is the MDL either adjusted or supported by the analysis of DCSs?		X				
S11	OI	Proficiency Test Reports:						
	01	1) Was the lab's performance acceptable on the applicable proficiency	tests or evaluation studies?	X				
812	01	Standards Documentation	<u> </u>	NZ.				
612	OI	1) Are all standards used in the analyses NISI-traceable or obtained i	rom other appropriate sources?	Х				
515	01	Compound/Analyte Identification Procedures	.49	v				
\$14	OI	Demonstration of Analyst Compound/analyst (DOC)		Λ				
514	01	1) Was DOC conducted consistent with NELAC Chapter 5 – Append	ix C?	v				
		2) Is documentation of the analyst's competency un-to-date and on fil	e?	X				
S15	OI	Verification/Validation Documentation for Methods (NELAC Cha	apter 5)	1				
	51	1) Are all the methods used to generate the data documented, applicable?	verified, and validated, where	X				
\$16	OI	Laboratory Standard Operating Procedures (SOPs).						
510		1) Are laboratory SOPs current and on file for each method performe	d?	X				
L								

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

²

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on February 23-26, 2021. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

ph And mt

06/21/21 Date

CLIENT:GolderProject:Sandow CCRLab Order:2106091

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method E300 - Anions Analysis Method M2540C - TDS Analysis

Exception Report R1-01

The sample was received and log-in performed on 6/11/21. A total of 1 sample was received. The sample arrived in good condition and was properly packaged.

Exception Report R7-03

For Anions analysis performed on 6/15/21 the matrix spikes and matrix spike duplicate recoveries (2106090-01 MSD & 2106091-01 MS/MSD) were slightly below control limits for Sulfate. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate (2106090-01 MS/MSD) was not from this work order. The sample selected for the matrix spike and matrix spike duplicate (2106091-01 MS/MSD) was from this work order. The LCS was within control limits for this analyte. No further corrective actions were taken.

For Metals analysis performed on 6/17/21 the matrix spike and matrix spike duplicate recoveries were below control limits for Calcium. These are flagged accordingly. The sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for this analyte. No further corrective actions were taken.

Exception Report S9-01

For Metals analysis performed on 6/17/21 the PDS recovery was below control limits for Calcium. This is flagged accordingly in the QC summary report. The serial dilution was within control limits for this analyte. No further corrective actions were taken.

CLIENT: Project: Lab Order:	Golder Sandow CCR 2106091		Work Order Samp	le Summary
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved

2106091-01 AX-29

Tag Number

Date: 21-Jun-21

06/10/21 11:30 AM

6/11/2021

Lab Order: 2106091 **Client:** Golder **Project:**

Sandow CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2106091-01A	AX-29	06/10/21 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/16/21 08:43 AM	100923
	AX-29	06/10/21 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/16/21 08:43 AM	100923
	AX-29	06/10/21 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/16/21 08:43 AM	100923
2106091-01B	AX-29	06/10/21 11:30 AM	Aqueous	E300	Anion Preparation	06/15/21 11:00 AM	100919
	AX-29	06/10/21 11:30 AM	Aqueous	E300	Anion Preparation	06/15/21 11:00 AM	100919
	AX-29	06/10/21 11:30 AM	Aqueous	M2540C	TDS Preparation	06/14/21 08:35 AM	100893

Lab Order:2106091Client:Golder

Project: Sandow CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2106091-01A	AX-29	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100923	50	06/17/21 01:59 PM	ICP-MS5_210617B
	AX-29	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100923	1	06/17/21 11:16 AM	ICP-MS5_210617B
	AX-29	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100923	1	06/17/21 02:25 PM	ICP-MS4_210617D
2106091-01B	AX-29	Aqueous	E300	Anions by IC method - Water	100919	1	06/16/21 05:34 AM	IC2_210615A
	AX-29	Aqueous	E300	Anions by IC method - Water	100919	100	06/16/21 01:18 AM	IC2_210615A
	AX-29	Aqueous	M2540C	Total Dissolved Solids	100893	1	06/14/21 12:10 PM	WC_210614B

DHL Anal	lytical, Inc.				Da	te:	21-Jun-21		
CLIENT:	Golder			Clier	nt Sample	ID: AX-29)	-	
Project:	Sandow CCR				Lab	ID: 21060	91-01		
Project No:	19122262	Collection Date: 06/10/21 11:30 AM							
Lab Order:	2106091				Ma	trix: AQUE	EOUS		
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TRACE METAI	TRACE METALS: ICP-MS - WATER		SW6020B					Analyst: SP	
Boron		0.370	0.0100	0.0300		mg/L	1	06/17/21 02:25 PM	
Calcium		365	5.00	15.0		mg/L	50	06/17/21 01:59 PM	
ANIONS BY IC	METHOD - WATER		E30	00				Analyst: BM	
Chloride		245	30.0	100		mg/L	100	06/16/21 01:18 AM	
Fluoride		<0.100	0.100	0.400		mg/L	1	06/16/21 05:34 AM	
Sulfate		1090	100	300		mg/L	100	06/16/21 01:18 AM	
TOTAL DISSO	LVED SOLIDS		M254	10C				Analyst: JS	

 OTAL DISSOLVED SOLIDS
 M2540C
 Analyst: JS

 Total Dissolved Solids (Residue, Filterable)
 2580
 50.0
 50.0
 mg/L
 1
 06/14/21 12:10 PM

Oualifiers: ND - Not Detected at the SDL	Oualifiers:	ND - Not Detected at the SDL
---	--------------------	------------------------------

J - Analyte detected between SDL and RL

- B Analyte detected in the associated Method Blank
- DF- Dilution Factor
- N Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)
- SDL Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 11

CLIENT: Golder Work Order: 2106091 Project: Sandow CCR

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS4_210428A

Sample ID: DCS4-100323 SampType: DCS4	Batch ID: Run ID:	100323 ICP-MS4_	210428A	TestNo: Analysis	s Date: 4	SW6020B \$/28/2021 10:39	:00 AM	Units: Prep Date	mg/ : 4/27	L 7/2021
Analyte		Result	RL	SPK value	Ref Va	al %REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron		0.0310	0.0300	0.0300	0	103	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- D Not Detected at the Method Detection Elinit
- RL Reporting Limit
- J Analyte detected between SDL and RL

DF Dilution Factor

MDLMethod Detection LimitRRPD outside accepted control limits

- S Spike Recovery outside control limits
- 5 Spike Recovery outside control lilling

N Parameter not NELAP certified

CLIENT:	Golder				ΔN	ALVT	ICAL	DC SI	IMMAI	V R	EPORT
Work Order:	2106091										
Project:	Sandow C	CR					RunII): I	CP-MS4_	210617	D/D
The QC data in batc	h 100923 ap	plies to the	following sa	mples: 210	6091-01A						
Sample ID: MB-100	923	Batch ID:	100923		TestNo:	SWe	6020B		Units:	mg/L	
SampType: MBLK		Run ID:	ICP-MS4	_210617D	Analysis	a Date: 6/17	/2021 2:13:	00 PM	Prep Date:	6/16/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Boron			<0.0100	0.0300							
Sample ID: LCS-10	0923	Batch ID:	100923		TestNo:	SWe	6020B		Units:	mg/L	
SampType: LCS		Run ID:	ICP-MS4	_210617D	Analysis	a Date: 6/17	/2021 2:15:	00 PM	Prep Date:	6/16/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Boron			0.200	0.0300	0.200	0	100	80	120		
Sample ID: LCSD-1	00923	Batch ID:	100923		TestNo:	SWe	6020B		Units:	mg/L	
SampType: LCSD		Run ID:	ICP-MS4	_210617D	Analysis	a Date: 6/17	/2021 2:17:	00 PM	Prep Date:	6/16/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Boron			0.191	0.0300	0.200	0	95.7	80	120	4.33	15
Sample ID: 2106093	3-04E SD	Batch ID:	100923		TestNo:	SWe	6020B		Units:	mg/L	
SampType: SD		Run ID:	ICP-MS4	_210617D	Analysis	a Date: 6/17	/2021 2:23:	00 PM	Prep Date:	6/16/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Boron			0.139	0.150	0	0.117				17.2	20
Sample ID: 2106093	3-04E PDS	Batch ID:	100923		TestNo:	SWe	6020B		Units:	mg/L	
SampType: PDS		Run ID:	ICP-MS4	_210617D	Analysis	a Date: 6/17	/2021 2:27:	00 PM	Prep Date:	6/16/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Boron			0.302	0.0300	0.200	0.117	92.3	75	125		
Sample ID: 2106093	3-04E MS	Batch ID:	100923		TestNo:	swe	6020B		Units:	mg/L	
SampType: MS		Run ID:	ICP-MS4	_210617D	Analysis	5 Date: 6/17	/2021 2:31:	00 PM	Prep Date:	6/16/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Boron			0.308	0.0300	0.200	0.117	95.6	75	125		
Sample ID: 2106093	3-04E MSD	Batch ID:	100923		TestNo:	swe	6020B		Units:	mg/L	
SampType: MSD		Run ID:	ICP-MS4	_210617D	Analysis	a Date: 6/17	/2021 2:32:	00 PM	Prep Date:	6/16/2	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Boron			0.306	0.0300	0.200	0.117	94.2	75	125	0.939	15

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 2 of 11 Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

CLIENT: Work Order:	Golder 2106091				AN	ALYT	ICAL (QC SU		RY R	EPORT
Project:	Sandow C	CK					Runn	J: N	CP-10154	_21001	/ D
Sample ID: ICV	/-210617	Batch ID:	R115846	i	TestNo:	SW	6020B		Units:	mg/L	
SampType: ICV	1	Run ID:	ICP-MS4	_210617D	Analysis	s Date: 6/17	7/2021 10:50	0:00 AM	Prep Date)]	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD F	RPDLimit Qual
Boron			0.0960	0.0300	0.100	0	96.0	90	110		
Sample ID: LC	VL-210617	Batch ID:	R115846	i	TestNo:	SW	6020B		Units:	mg/L	
SampType: LC	VL	Run ID:	ICP-MS4	_210617D	Analysis	s Date: 6/17	7/2021 11:01	I:00 AM	Prep Date	;:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD F	RPDLimit Qual
Boron			0.0203	0.0300	0.0200	0	102	80	120		
Sample ID: CC	V3-210617	Batch ID:	R115846	i	TestNo:	SW	6020B		Units:	mg/L	
SampType: CC	v	Run ID:	ICP-MS4	_210617D	Analysis	s Date: 6/17	7/2021 2:08:	00 PM	Prep Date	<i>;</i> :	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD F	RPDLimit Qual
Boron			0.203	0.0300	0.200	0	102	90	110		
Sample ID: CC	V4-210617	Batch ID:	R115846		TestNo:	SW	6020B		Units:	mg/L	
SampType: CC	v	Run ID:	ICP-MS4	_210617D	Analysis	s Date: 6/17	7/2021 2:37:	00 PM	Prep Date	;:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD F	RPDLimit Qual
Boron			0.213	0.0300	0.200	0	107	90	110		

CLIENT:

Golder

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

Page 3 of 11

CLIENT: Work Order:	Golder 2106091				AN	ALYTI	CAL C	QC SU	MMAI	RY I	REPORT
Project:	Sandow CO	CR					RunID): I(CP-MS5_	21042	28A
Sample ID: DCS2-1 SampType: DCS2	00323	Batch ID: Run ID:	100323 ICP-MS5_	210428A	TestNo: Analysis	SW6 Date: 4/28/	020B 2021 10:53	:00 AM	Units: Prep Date:	mg/l 4/27	L //2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Calcium			0.302	0.300	0.300	0	101	70	130	0	0

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 4 of 11

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT: (Golder				AN	ALYT	ICAL (DC SI	IMMAR	RY RF	EPO I	RТ
Work Order: 2	2106091				1			2000				
Project: S	Sandow Co	CR					RunII): I	CP-MS5_2	210617	B	
The QC data in batch	100923 ap	plies to the	following sa	mples: 210	6091-01A							
Sample ID: MB-1009	23	Batch ID:	100923		TestNo:	SW	6020B		Units:	mg/L		
SampType: MBLK		Run ID:	ICP-MS5	_210617B	Analysis	5 Date: 6/17	/2021 10:57	':00 AM	Prep Date:	6/16/20)21	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			<0.100	0.300								
Sample ID: LCS-100	923	Batch ID:	100923		TestNo:	SW	6020B		Units:	mg/L		
SampType: LCS		Run ID:	ICP-MS5	_210617B	Analysis	Bate: 6/17	/2021 11:00	:00 AM	Prep Date:	6/16/20)21	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			4.93	0.300	5.00	0	98.5	80	120			
Sample ID: LCSD-10	0923	Batch ID:	100923		TestNo:	SW	6020B		Units:	mg/L		
SampType: LCSD		Run ID:	ICP-MS5	_210617B	Analysis	a Date: 6/17	/2021 11:03	:00 AM	Prep Date:	6/16/20)21	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			4.78	0.300	5.00	0	95.6	80	120	3.06	15	
Sample ID: 2106093-	04E SD	Batch ID:	100923		TestNo:	SW	6020B		Units:	mg/L		
SampType: SD		Run ID:	ICP-MS5	_210617B	Analysis	a Date: 6/17	/2021 11:10	:00 AM	Prep Date:	6/16/20)21	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			94.7	1.50	0	93.8				0.914	20	
Sample ID: 2106093-	04E PDS	Batch ID:	100923		TestNo:	SW	6020B		Units:	mg/L		
SampType: PDS		Run ID:	ICP-MS5	_210617B	Analysis	a Date: 6/17	/2021 11:36	:00 AM	Prep Date:	6/16/20	21	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			94.6	0.300	5.00	93.8	14.4	75	125			S
Sample ID: 2106093-	04E MS	Batch ID:	100923		TestNo:	SW	6020B		Units:	mg/L		
SampType: MS		Run ID:	ICP-MS5	_210617B	Analysis	a Date: 6/17	/2021 11:41	:00 AM	Prep Date:	6/16/20	21	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			97.1	0.300	5.00	93.8	64.8	75	125			S
Sample ID: 2106093-	04E MSD	Batch ID:	100923		TestNo:	SW	6020B		Units:	mg/L		
SampType: MSD		Run ID:	ICP-MS5	_210617B	Analysis	Bate: 6/17	/2021 11:48	:00 AM	Prep Date:	6/16/20)21	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit	Qual
Calcium			95.7	0.300	5.00	93.8	37.7	75	125	1.41	15	s

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 5 of 11 Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAP certified

Work Ord	ler:	2106091				AIN		ICAL		IVIIVIA		LIUNI
Project:		Sandow C	CR					RunID): I(CP-MS5	_21061	7B
Sample ID:	ICV-210	0617	Batch ID:	R115845		TestNo:	SW	6020B		Units:	mg/L	
SampType:	ICV		Run ID:	ICP-MS5	_210617B	Analysis	Date: 6/17	7/2021 10:41	:00 AM	Prep Date	:	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD I	RPDLimit Qual
Calcium				2.43	0.300	2.50	0	97.0	90	110		
Sample ID:	LCVL-2	10617	Batch ID:	R115845		TestNo:	sw	6020B		Units:	mg/L	
SampType:	LCVL		Run ID:	ICP-MS5	_210617B	Analysis	Date: 6/17	7/2021 10:49	:00 AM	Prep Date):	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD I	RPDLimit Qual
Calcium				0.0853	0.300	0.100	0	85.3	80	120		
Sample ID:	CCV1-2	10617	Batch ID:	R115845		TestNo:	sw	6020B		Units:	mg/L	
SampType:	CCV		Run ID:	ICP-MS5	_210617B	Analysis	Date: 6/17	7/2021 11:52	:00 AM	Prep Date):	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD I	RPDLimit Qual
Calcium				4.99	0.300	5.00	0	99.7	90	110		
Sample ID:	CCV2-2	210617	Batch ID:	R115845		TestNo:	sw	6020B		Units:	mg/L	
SampType:	ccv		Run ID:	ICP-MS5	_210617B	Analysis	5 Date: 6/17	7/2021 12:44	:00 PM	Prep Date	:	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD I	RPDLimit Qual
Calcium				5.10	0.300	5.00	0	102	90	110		
Sample ID:	CCV3-2	10617	Batch ID:	R115845		TestNo:	SW	6020B		Units:	mg/L	
SampType:	CCV		Run ID:	ICP-MS5	_210617B	Analysis	Date: 6/17	7/2021 2:31:0	00 PM	Prep Date):	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD I	RPDLimit Qual
Calcium				4.85	0.300	5.00	0	97.0	90	110		

CLIENT:

Golder

_

ANALYTICAL QC SUMMARY REPORT

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 6 of 11
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

CLIENT: Work Order:	Golder 2106091				AN	ALYT	ICAL (QC SU	J MMA I	RY I	REPORT
Project:	Sandow	CCR					RunII): I	C2_21052	27A	
Sample ID: DCS3-	100738	Batch ID:	100738		TestNo	E300)		Units:	mg/	L
SampType: DCS3		Run ID:	IC2_210	527A	Analys	is Date: 5/27	/2021 4:13:	05 PM	Prep Date	5/27	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride			1.25	1.00	1.000	0	125	70	130	0	0
Fluoride			0.408	0.400	0.4000	0	102	70	130	0	0
Sulfate			3.03	3.00	3.000	0	101	70	130	0	0

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 7 of 11

S Spike Recovery outside control limits

N Parameter not NELAP certified

or or a crit	2100091											
Project:	Sandow C	CR					RunID): I	C2_21061	5A		
The QC data in ba	tch 100919 ap	plies to the	following sa	mples: 210	6091-01B							
Sample ID: MB-10	00919	Batch ID:	100919		TestNo:	E300			Units:	mg/L		
SampType: MBL#	K	Run ID:	IC2_2106	15A	Analysis	Date: 6/15/2	021 7:42:1	19 PM	Prep Date:	6/15/2	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	GRPD F	RPDLimit	Qual
Chloride			<0.300	1.00								
Fluoride			<0.100	0.400								
Sulfate			<1.00	3.00								
Sample ID: LCS-1	100919	Batch ID:	100919		TestNo:	E300			Units:	mg/L		
SampType: LCS		Run ID:	IC2_2106	15A	Analysis	Date: 6/15/2	021 7:58:1	19 PM	Prep Date:	6/15/2	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	GRPD F	RPDLimit	Qual
Chloride			9.06	1.00	10.00	0	90.6	90	110			
Fluoride			3.74	0.400	4.000	0	93.6	90	110			
Sulfate			29.0	3.00	30.00	0	96.8	90	110			
Sample ID: LCSD	-100919	Batch ID:	100919		TestNo:	E300			Units:	mg/L		
SampType: LCSD	I	Run ID:	IC2_2106	15A	Analysis	Date: 6/15/2	021 8:14:2	20 PM	Prep Date:	6/15/2	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	GRPD F	RPDLimit	Qual
Chloride			9.03	1.00	10.00	0	90.3	90	110	0.309	20	
Fluoride			3.76	0.400	4.000	0	93.9	90	110	0.347	20	
Sulfate			29.0	3.00	30.00	0	96.6	90	110	0.145	20	
Sample ID: 21060	90-01BMS	Batch ID:	100919		TestNo:	E300			Units:	mg/L		
SampType: MS		Run ID:	IC2_2106	15A	Analysis	Date: 6/15/2	021 8:46:2	20 PM	Prep Date:	6/15/2	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	GRPD F	RPDLimit	Qual
Chloride			2060	100	2000	152.3	95.4	90	110			
Fluoride			1960	40.0	2000	0	98.1	90	110			
Sulfate			3140	300	2000	1355	89.1	90	110			S
Sample ID: 21060	90-01BMSD	Batch ID:	100919		TestNo:	E300			Units:	mg/L		
SampType: MSD		Run ID:	IC2_2106	15A	Analysis	Date: 6/15/2	021 9:02:1	19 PM	Prep Date:	6/15/2	021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	GRPD F	RPDLimit	Qual
Chloride			2010	100	2000	152.3	92.9	90	110	2.42	20	
Fluoride			1940	40.0	2000	0	96.8	90	110	1.33	20	
Sulfate			3090	300	2000	1355	86.7	90	110	1.52	20	S
Sample ID: 21060	91-01BMS	Batch ID:	100919		TestNo:	E300			Units:	mg/L		
SampType: MS		Run ID:	IC2_2106	15A	Analysis	Date: 6/16/2	021 1:34:1	19 AM	Prep Date:	6/15/2	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD F	RPDLimit	Qual

Qualifiers:

CLIENT:

Golder

- В Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits
- S Spike Recovery outside control limits

Page 8 of 11

Ν Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

CLIENT: Work Ordoni	Golder				AN	ALYT	ICAL (QC S	UMMA	RY R	EPO	RT
Project:	Sandow C	CR					RunII):	IC2_2106	15A		
Sample ID: 21060	91-01BMS	Batch ID:	100919		TestNo:	E30	0		Units:	mg/L		
SampType: MS		Run ID:	IC2_210	615A	Analysis	s Date: 6/16	/2021 1:34:	19 AM	Prep Date	: 6/15/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD	RPDLim	it Qual
Chloride			2130	100	2000	244.6	94.4	90	110			
Fluoride			1960	40.0	2000	0	98.1	90	110			
Sulfate			2810	300	2000	1093	85.7	90	110			S
Sample ID: 21060	91-01BMSD	Batch ID:	100919		TestNo:	E30	0		Units:	mg/L		
SampType: MSD		Run ID:	IC2_210	615A	Analysis	s Date: 6/16	/2021 1:50:	19 AM	Prep Date	: 6/15/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD	RPDLim	it Qual
Chloride			2130	100	2000	244.6	94.1	90	110	0.354	20	
Fluoride			1970	40.0	2000	0	98.5	90	110	0.386	20	

2000

1093

85.9

90

110

0.148

20

Page 9 of 11

S

Qualifiers:

В

CLIENT:

Sulfate

Golder

Analyte detected in the associated Method Blank

2810

300

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

Project:	S	andow CCR					RunII): I	C2_2106	15A	
Sample ID:	ICV-2106	15 Batch ID	: R1158	16	TestNo	D: E300)		Units:	mg/L	
SampType:	ICV	Run ID:	IC2_2	10615A	Analys	is Date: 6/15 /	/2021 7:10:	19 PM	Prep Date	2	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDL	mit Qual
Chloride			24.3	1.00	25.00	0	97.4	90	110		
Fluoride			9.96	0.400	10.00	0	99.6	90	110		
Sulfate			77.2	3.00	75.00	0	103	90	110		
Sample ID:	CCV1-21	0615 Batch ID	: R1158	16	TestNo	D: E300	D		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_2	10615A	Analys	is Date: 6/16 /	/2021 12:30):19 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDL	mit Qual
Chloride			9.16	1.00	10.00	0	91.6	90	110		
Fluoride			3.95	0.400	4.000	0	98.7	90	110		
Sulfate			29.3	3.00	30.00	0	97.8	90	110		
Sample ID:	CCV2-21	615 Batch ID	: R1158	16	TestNo	D: E300	D		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_2	10615A	Analys	is Date: 6/16 /	/2021 5:02:	19 AM	Prep Date	2	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDL	mit Qual
Chloride			9.25	1.00	10.00	0	92.5	90	110		
Fluoride			3.99	0.400	4.000	0	99.8	90	110		
Sulfate			29.4	3.00	30.00	0	98.0	90	110		
Sample ID:	CCV3-21	0615 Batch ID	: R1158	16	TestNo	D: E300	D		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_2	10615A	Analys	is Date: 6/16 /	/2021 6:38:	19 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDL	mit Qual
Fluoride			3.98	0.400	4.000	0	99.6	90	110		

CLIENT:

Work Order:

Golder

2106091

Page 10 of 11

ANALYTICAL QC SUMMARY REPORT

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

CLIENT:	Golder					ICAT (oc si		V RI	PORT
Work Order:	2106091					ICAL				
Project:	Sandow CCR					RunII): V	VC_21061	4B	
The QC data in batch	100893 applies t	o the followir	ng samples: 21	06091-01B						
Sample ID: MB-1008	B93 Batc	h ID: 1008	93	TestNo	: M25	540C		Units:	mg/L	
SampType: MBLK	Run	ID: WC _	210614B	Analys	is Date: 6/14	/2021 12:10):00 PM	Prep Date:	6/14/20)21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RI	PDLimit Qual
Total Dissolved Solids	s (Residue, Filtera	a <10.0	10.0							
Sample ID: LCS-100	893 Batc	h ID: 1008	93	TestNo	: M25	540C		Units:	mg/L	
SampType: LCS	Run	ID: WC _	210614B	Analys	is Date: 6/14	/2021 12:10):00 PM	Prep Date:	6/14/20)21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RI	PDLimit Qual
Total Dissolved Solids	s (Residue, Filtera	a 759	10.0	745.6	0	102	90	113		
Sample ID: 2106088	-01B-DUP Batc	h ID: 1008	93	TestNo	: M25	540C		Units:	mg/L	
SampType: DUP	Run	ID: WC _	210614B	Analys	s Date: 6/14	/2021 12:10	0:00 PM	Prep Date:	6/14/20)21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RI	PDLimit Qual
Total Dissolved Solids	s (Residue, Filtera	a 2010	50.0	0	2015				0.248	5
Sample ID: 2106088	-02B-DUP Batc	h ID: 1008	93	TestNo	: M25	540C		Units:	mg/L	
SampType: DUP	Run	ID: WC _	210614B	Analys	is Date: 6/14	/2021 12:10):00 PM	Prep Date:	6/14/20)21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RI	PDLimit Qual
Total Dissolved Solids	s (Residue, Filtera	a 2460	50.0	0	2550				3.59	5

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 11 of 11
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	e
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified	

CLIENT:GolderWork Order:2106091Project:Sandow CCR

TestNo:	E300	MDL	MQL
Analyte		mg/L	mg/L
Chloride		0.300	1.00
Fluoride		0.100	0.400
Sulfate		1.00	3.00
TestNo:	SW6020B	MDL	MQL
Analyte		mg/L	mg/L
Boron		0.0100	0.0300
Calcium		0.100	0.300
TestNo:	M2540C	MDL	MQL
Analyte		mg/L	mg/L
Total Dis	solved Solids (Residue, Filt	10.0	10.0

MQL SUMMARY REPORT

Will Vienne Golder 2201 Double Creek Dr #4004 Round Rock, Texas 78664 TEL: (512) 671-3434 FAX: (512) 671-3446 RE: Sandow CCR

Order No.: 2111158

Dear Will Vienne:

DHL Analytical, Inc. received 9 sample(s) on 11/19/2021 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-21-27

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 2111158	
WorkOrderSampleSummary 2111158	
PrepDatesReport 2111158	
AnalyticalDatesReport 2111158	12
Analytical Report 2111158	14
AnalyticalQCSummaryReport 2111158	
MQLSummaryReport 2111158	

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222 Web: www.dhlanalytical.com Email: login@dhlanalytical.com											۷-	.C	DF-CUSTODY																			
111 11 11 D.		Current	D :=																													
CLIENT: <u>2201 000</u>	Goll	reek	Dr.				$TE: \underbrace{NIII}_{C}$																									
ADDRESS:	olde	r MSS	ociat	e>		P	PO#:											DHL WORKORDER #: 2111155														
PHONE: SIZ-671-3434 EMAIL: Will Vienne									$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n$																							
DATA REPORTED TO:	Wil	(Vrenn	23-	San	13	PR	OJE	CT L	OCA	TIC	DN C	DR N	NAN	IE:2	au	dc	in)) (C		·											
ADDITIONAL REPORT COPIES TO:							CLIENT PROJECT # 1912262											COLLECTOR: 3 - Savis														
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PRE	SER\	/ATI	ON			9												٦ ,							
for TRRP report?	Lab	L=LIQUID		P=PAI	INT					2		[0]	D 100				T 827		MET/		ğ					KIDE I						
🗆 Yes 🗖 No	Use	S=SOIL		SL=SL	UDGE	Late					AMMM																					
-	Only	SO=SOLID	1	_		ine			Ace	ESE	YSI	AETH	900	24.1	625.	PAH			0.8		ALK	<u> </u>										
						nta			Z	VPR	Į		IL Ha		svo	HOLD	625.1	Hd L	20	1	W0	8				ž k						
Field Consult LD	DHL	Collection	Collection	Matrix	Container	ပီ		ج اچ	40	I D	A	MTB			02	0			6020	Ĕ	Ξ.	300				I SS [7					
Field Sample I.D.	Lab #	Date	Time		Туре	of	릴	Z		日國		Ш	H 100	C 826	0C 82	H 827	ST 82	88 83	TALS	RA 8		IONS	-S			S L	橙			רורו נ		
			-	$\frac{1}{1}$		#			- <u> z</u>					5 5	8	PA			Σ	8	표	¥ ا	2 2	2	5 1	≞–	7	+	4			ES
AX-25K	01	11/16/21	905	w	P	2		<u> </u>		X					<u> </u>						_	+			_	<u>ال</u>	<u>×</u>	+	_			
AV-222 AX-28	921	1/16/2/ 1130	950			Ш						\square			<u> </u>										_		\square	\perp	_			
Ax-28 Ax-29	03	11/16/21	1215			Щ		↓														\perp					Щ	\perp				
AX-23	04	11/17/21	955																													
Axmw-1	05	10:30	930 G	D RB/21				\square																								
Armw-Z	06		1158 2	Pb						-																						
Ax-24	07	11/18/21	1610																													
AY-26	28		1645																													
AX-27	09		1725	V				V		V												Τ	Τ	Т	Τ	Π	νT	Т	Т			
						1			Τ															Τ		Т	Τ	T				
																								T		T	Т	Τ				
																			1			\top		╈	╈	+	\top	1	+			
······································														+								1		╈	╈	+	+		-			
																					\neg			╈	╈	+	+	+	+			
							\vdash		+										+		+			╈		+	+	+	-			
				-		1	\vdash		+						\square				╈					+	+	+	+	+	+			
Relinguished By: (Sign)		1	DATE/TIME	<u> </u>	Recei	red b	y:			┢	TL	JRN				1E		ABO	RATO		JSE		Y			<u> </u>	<u> </u>	<u> </u>	<u> </u>			
1 the h		(]//	9/21 13	700	1			10000000000000000000000000000000000000			(CA	ALL F	IRST	FOR	RUS	SH)	R	ECEI	VING	TEN	1P (°	C): _],	2	1	<u> </u>	<u>/</u>	е. 			м#: 🕻	76
Relinquisyed By: (Sign) DATE/TIME Received by: RU							RUSH-1 DAY RUSH-2 DAY CUSTODY SE						SEALS: □ BROKEN □ INTACT KNOT USED																			
Relinquished By: (Sign)			DATE/TIME		Recei	ved b	oy:			ן ים		RM/		0	THE	R 🗆		CAF	RIER	: C] LS	0	FI NA	EDE HA	X ND I	DEI	UPS IVEF	C RED] CC	URIER	🗆 от	HER
	HL DIS	SPOSAL @	5.00 each		🗆 Retu	'n				1												DH)C	RE\	/ 3	N	ЛАІ	R 2()21		

ł

Sam	ple Receipt Cheo	cklist			
Client Name Golder		Date Receive	ed:	11/19/2021	
Work Order Number 2111158		Received by:	RA		
Chartelist completed by: 11/2	2/2021	Reviewed by	SH	11/22/2021	
Signature	Date		Initials	Date	
ر Carrier na	me: Hand Delivered	<u>1</u>			
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Presen	t 🗆	
Custody seals intact on shippping container/cooler?	Yes	Νο	Not Presen	it 🔽	
Custody seals intact on sample bottles?	Yes	Νο	Not Presen	nt 🔽	
Chain of custody present?	Yes 🗹	Νο			
Chain of custody signed when relinquished and received?	Yes 🗹	Νο			
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌			
Samples in proper container/bottle?	Yes 🗹	No 🗌			
Sample containers intact?	Yes 🗹	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
All samples received within holding time?	Yes 🗹	No 🗌	1		
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌	1.2 °C/1		
Water - VOA vials have zero headspace?	Yes	No 🗌	No VOA vial	s submitted	
Water - pH<2 acceptable upon receipt?	Yes 🗸	No		LOT # 13171	
	Adjusted? /	<u>Vo</u>	Checked	d by <u>K. H.</u>	
Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt?	Yes 🗌	No	NA 🗹	LOT #	
	Adjusted?		Checked	d by	
Any No response must be detailed in the comments section bel	low				
Client contacted: Golder Date contacted	1: 11/22-121	Per	son contacte	ed Jacob J.	
Contacted by RYan A. Regarding:	Collection T	time.			
C AX Mul-1 had a calle	ction time of	09.30 Perce	(del co t	Le Coc but the s	Simole
Comments: Sample AXIIII I HAR I CON	onon anje av		aca on Ti	ne cor our mes	<u>ompro</u>
label has a collection time of 10:30					
PACTOR I T NHL MILLER N	ha collection	time 1.10%	ten on i	he label (10:3	,0)
Corrective Action: (Pr Jacob J, Dire Will Use 4	ne concentan	Wire WW	1011 011 4		

Page 1 of 1
r								
Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist: Reportable Data						
Proje	ect Na	ame: Sandow CCR LRC Date:	12/1/2021					
Revie	ewer	Name: Angie O'Donnell Laboratory V	Vork Order: 2111158					
Prep	Bate	h Number(s): See Prep Dates Report Run Batch: S	ee Analytical Dates Report					
#1	A ²	Description		Yes	No	NA ³	\mathbf{NR}^4	ER# ⁵
		Chain-of-Custody (C-O-C)						
R1	OI	1) Did samples meet the laboratory's standard conditions of sample accep	tability upon receipt?	Χ				R1-01
	<u>.</u>	2) Were all departures from standard conditions described in an exception	report?	Χ				
R2	OI	Sample and Quality Control (QC) Identification	. 1 9	v				
		1) Are all laboratory ID numbers cross-referenced to the laboratory ID f	C data?	A V				
R3	OI	2) Are an laboratory in humbers cross-referenced to the corresponding Q		Λ				
NO	01	1) Were all samples prepared and analyzed within holding times?		X				
		2) Other than those results < MQL, were all other raw values bracketed by	v calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?		Χ				
		4) Were all analyte identifications checked by a peer or supervisor?		Χ				
		5) Were sample detection limits reported for all analytes not detected?	1	Χ				
		(6) Were all results for soil and sediment samples reported on a dry weight	basis?			X		
		7) Were % moisture (or solids) reported for all soil and sediment samples 8) Were hulk soils/solids samples for volatile analysis extracted with meth	2 2 apol per EDA Method 50352			X		
		9) If required for the project TICs reported?	ianoi per EFA Method 5055?			A X		
R4	0	Surrogate Recovery Data				Λ		
	_	1) Were surrogates added prior to extraction?				Χ		
		2) Were surrogate percent recoveries in all samples within the laboratory	QC limits?			Χ		
R5	OI	Test Reports/Summary Forms for Blank Samples						
		1) Were appropriate type(s) of blanks analyzed?		Χ				
		2) Were blanks analyzed at the appropriate frequency?	1 1 C	X				
		3) Where method blanks taken through the entire analytical process, inclu applicable, cleanup procedures?	ding preparation and, if	Х				
		4) Were blank concentrations < MDL?		x				
		5) For analyte(s) detected in a blank sample, was the concentration, unadj	usted for sample specific					
		factors, in all associated field samples, greater than 10 times the concentr	ation in the blank sample?			X		
R6	OI	Laboratory Control Samples (LCS):						
		1) Were all COCs included in the LCS?		Χ				
		2) Was each LCS taken through the entire analytical procedure, including	prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?	-:					
		(4) Were LCS (and LCSD, if applicable) 76KS within the laboratory QC in (5) Does the detectability data document the laboratory's capability to detect	citits:	Λ				
		to calculate the SDLs?	et the COCS at the WIDE used	Х				
		6) Was the LCSD RPD within QC limits (if applicable)?		X				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data						
		1) Were the project/method specified analytes included in the MS and MS	D?	Χ				
		2) Were MS/MSD analyzed at the appropriate frequency?		X				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limit 4) Were MS(MSD RDD, within 1-heartern QC limits?	ts?	v	X			R7-03
DQ	OI	4) were MIS/MISD RPDs within laboratory QC limits?		Λ				
по	01	1) Were appropriate analytical duplicates analyzed for each matrix?		x				-
		2) Were analytical duplicates analyzed at the appropriate frequency?		X				
		3) Were RPDs or relative standard deviations within the laboratory QC lin	nits?	X				
R9	OI	Method Quantitation Limits (MQLs):						
		1) Are the MQLs for each method analyte included in the laboratory data	package?	Χ				
		2) Do the MQLs correspond to the concentration of the lowest non-zero ca	alibration standard?	X				
D10		3) Are unadjusted MQLs and DCSs included in the laboratory data packag	ge?	X				
K10		Uner Problems/Anomalies	and FD?	v				
		2) Was applicable and available technology used to lower the SDL to min	imize the matrix interference	Λ				
		affects on the sample results?		X				
		3) Is the laboratory NELAC-accredited under the Texas Laboratory Accre	ditation Program for the	v				
		analytes, matrices and methods associated with this laboratory data packa	ge?	Λ				

Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Supporting D	ata					
Proje	ct Na	ame: Sandow CCR LRC D	ate: 12/1/2021					
Revie	wer	Name: Angie O'Donnell Labora	tory Work Order: 2111158					
Prep	Batc	h Number(s): See Prep Dates Report Run Ba	tch: See Analytical Dates Report					
#1	A^2	Description	, , , , , , , , , , , , , , , , , , ,	Yes	No	NA ³	NR ⁴	ER# ⁵
<u>S1</u>	OI	Initial Calibration (ICAL)		105	110	TTT	Tuk	ERA
		$1) W_{and} = \frac{1}{2} \frac{1}{2}$	http://within.OC.limit-9	V				
		1) Were response factors and/or relative response factors for each and 2) Were percent PSDs or correlation coefficient criteria met?	aryte within QC limits?					
		3) Was the number of standards recommended in the method used for	r all analytes?					
		4) Were all points generated between the lowest and highest standard	used to calculate the curve?	X				
		5) Are ICAL data available for all instruments used?	used to calculate the curve.	X				
		6) Has the initial calibration curve been verified using an appropriate	second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV)	and Continuing Calibration					
		blank (CCB):						
		1) Was the CCV analyzed at the method-required frequency?		Х				
		2) Were percent differences for each analyte within the method-requi	red QC limits?	Χ				
		3) Was the ICAL curve verified for each analyte?		Х				
		4) Was the absolute value of the analyte concentration in the inorgani	c CCB < MDL?	Χ				
S3	0	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		Χ				
		2) Were ion abundance data within the method-required QC limits?		X				
S4	0	Internal Standards (IS):						
0.	01	1) Were IS area counts and retention times within the method-require	ed QC limits?	X				
85	OI	Raw Data (NELAC Section 5.5.10)	· 11 1	V				
		1) were the raw data (for example, chromatograms, spectral data) rev	lewed by an analyst?					
86	0	2) were data associated with manual integrations hagged on the raw	data?	λ				
30	0	1) Did dual column confirmation results meet the method required O	C2			v		
\$7	0	Tentatively Identified Compounds (TICs):	C:			Λ		
57	0	1) If TICs were requested, were the mass spectra and TIC data subject	t to appropriate checks?			X		
S8	Ι	Interference Check Sample (ICS) Results:						
		1) Were percent recoveries within method QC limits?		Χ				
S9	Ι	Serial Dilutions, Post Digestion Spikes, and Method of Standard	Additions					
		1) Were percent differences, recoveries, and the linearity within	the OC limits specified in the					~~ ~ ~ ~
		method?	and QC many specified in and		X			S9-01
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		Χ				
		2) Is the MDL either adjusted or supported by the analysis of DCSs?		Χ				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficiency	y tests or evaluation studies?	Χ				
S12	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtained t	from other appropriate sources?	X				
S13	OI	Compound/Analyte Identification Procedures	10					
014	OI	1) Are the procedures for compound/analyte identification documente	ed?	Χ				
514		Demonstration of Analyst Competency (DUC)	iv C2	v				
		1) was DOC conducted consistent with NELAC Chapter $5 - Append 2$) is documentation of the analyst's competency up to date and on fi						
S15	OI	Verification/Validation Documentation for Methods (NFLAC Ch	anter 5)	Λ				
515		1) Are all the methods used to concerts the date documentation	wanified and validated where					
		applicable?	vermen, and validated, where	Х				
617	OT	approactors Story lond On anothing Descriptions (SOD-)						
510		Laboratory Standard Operating Procedures (SOPS):						
		1) Are laboratory SOPs current and on file for each method performe	d?	X				

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

²

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on February 23-26, 2021. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

all what

12/01/21 Date

CLIENT:GolderProject:Sandow CCRLab Order:2111158

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method E300 - Anions Analysis Method M2540C - TDS Analysis

Exception Report R1-01

The samples were received and log-in performed on 11/19/2021. A total of 9 samples were received and analyzed. The samples arrived in good condition and were properly packaged. See details regarding the time of collection for one sample in the Sample Receipt Checklist.

Exception Report R7-03

For Metals Analysis, for Batch 102952, the recovery of Calcium for the Matrix Spike and Matrix Spike Duplicate (2111159-21 MS/MSD) was above the method control limits. This is flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated LCS. No further corrective action was taken.

Exception Report S9-01

For Metals Analysis, for Batch 102952, the recovery of Calcium for the Post Digestion Spike (2111159-21 PDS) was outside of the method control limits. This is flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated Serial Dilution. No further corrective action was taken.

CLIENT:GolderProject:Sandow CCRLab Order:2111158

Date: 01-Dec-21

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recyed
2440 Ship 12				11/10/2021
2111158-01	AX-25R		11/16/21 09:05 AM	11/19/2021
2111158-02	AX-28		11/16/21 11:30 AM	11/19/2021
2111158-03	AX-29		11/16/21 12:15 PM	11/19/2021
2111158-04	AX-23		11/17/21 09:55 AM	11/19/2021
2111158-05	AXMW-1		11/17/21 10:30 AM	11/19/2021
2111158-06	AXMW-2		11/17/21 11:58 AM	11/19/2021
2111158-07	AX-24		11/18/21 04:10 PM	11/19/2021
2111158-08	AX-26		11/18/21 04:45 PM	11/19/2021
2111158-09	AX-27		11/18/21 05:25 PM	11/19/2021

Lab Order: 2111158 **Client:** Golder **Project:**

Sandow CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2111158-01A	AX-25R	11/16/21 09:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
	AX-25R	11/16/21 09:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
2111158-01B	AX-25R	11/16/21 09:05 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-25R	11/16/21 09:05 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-25R	11/16/21 09:05 AM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939
2111158-02A	AX-28	11/16/21 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
	AX-28	11/16/21 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
2111158-02B	AX-28	11/16/21 11:30 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-28	11/16/21 11:30 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-28	11/16/21 11:30 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-28	11/16/21 11:30 AM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939
2111158-03A	AX-29	11/16/21 12:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
	AX-29	11/16/21 12:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
2111158-03B	AX-29	11/16/21 12:15 PM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-29	11/16/21 12:15 PM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-29	11/16/21 12:15 PM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939
2111158-04A	AX-23	11/17/21 09:55 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
	AX-23	11/17/21 09:55 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
2111158-04B	AX-23	11/17/21 09:55 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-23	11/17/21 09:55 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-23	11/17/21 09:55 AM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939
2111158-05A	AXMW-1	11/17/21 10:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
	AXMW-1	11/17/21 10:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
2111158-05B	AXMW-1	11/17/21 10:30 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AXMW-1	11/17/21 10:30 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AXMW-1	11/17/21 10:30 AM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939
2111158-06A	AXMW-2	11/17/21 11:58 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
	AXMW-2	11/17/21 11:58 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952

Page 1 of 2

Lab Order: 2111158 **Client:** Golder **Project:**

Sandow CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2111158-06B	AXMW-2	11/17/21 11:58 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AXMW-2	11/17/21 11:58 AM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AXMW-2	11/17/21 11:58 AM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939
2111158-07A	AX-24	11/18/21 04:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
	AX-24	11/18/21 04:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
2111158-07B	AX-24	11/18/21 04:10 PM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-24	11/18/21 04:10 PM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-24	11/18/21 04:10 PM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939
2111158-08A	AX-26	11/18/21 04:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
	AX-26	11/18/21 04:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/23/21 08:18 AM	102952
2111158-08B	AX-26	11/18/21 04:45 PM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-26	11/18/21 04:45 PM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-26	11/18/21 04:45 PM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939
2111158-09A	AX-27	11/18/21 05:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/24/21 08:48 AM	102970
	AX-27	11/18/21 05:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/24/21 08:48 AM	102970
2111158-09B	AX-27	11/18/21 05:25 PM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-27	11/18/21 05:25 PM	Aqueous	E300	Anion Preparation	11/23/21 02:34 PM	102961
	AX-27	11/18/21 05:25 PM	Aqueous	M2540C	TDS Preparation	11/22/21 10:59 AM	102939

Lab Order:2111158Client:Golder

Project: Sandow CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2111158-01A	AX-25R	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	50	11/24/21 02:30 PM	ICP-MS5_211124B
	AX-25R	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	1	11/24/21 03:14 PM	ICP-MS4_211124D
2111158-01B	AX-25R	Aqueous	E300	Anions by IC method - Water	102961	100	11/23/21 05:26 PM	IC2_211123A
	AX-25R	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 02:30 AM	IC2_211123A
	AX-25R	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B
2111158-02A	AX-28	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	1	11/24/21 03:16 PM	ICP-MS4_211124D
	AX-28	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	50	11/24/21 02:32 PM	ICP-MS5_211124B
2111158-02B	AX-28	Aqueous	E300	Anions by IC method - Water	102961	100	11/23/21 05:43 PM	IC2_211123A
	AX-28	Aqueous	E300	Anions by IC method - Water	102961	10	11/23/21 11:57 PM	IC2_211123A
	AX-28	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 02:47 AM	IC2_211123A
	AX-28	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B
2111158-03A	AX-29	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	1	11/24/21 03:18 PM	ICP-MS4_211124D
	AX-29	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	50	11/24/21 02:35 PM	ICP-MS5_211124B
2111158-03B	AX-29	Aqueous	E300	Anions by IC method - Water	102961	100	11/23/21 06:34 PM	IC2_211123A
	AX-29	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 03:04 AM	IC2_211123A
	AX-29	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B
2111158-04A	AX-23	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	1	11/24/21 03:20 PM	ICP-MS4_211124D
	AX-23	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	50	11/24/21 02:38 PM	ICP-MS5_211124B
2111158-04B	AX-23	Aqueous	E300	Anions by IC method - Water	102961	10	11/24/21 12:14 AM	IC2_211123A
	AX-23	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 03:21 AM	IC2_211123A
	AX-23	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B
2111158-05A	AXMW-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	20	11/24/21 03:22 PM	ICP-MS4_211124D
	AXMW-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	50	11/24/21 02:40 PM	ICP-MS5_211124B
2111158-05B	AXMW-1	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 03:38 AM	IC2_211123A
	AXMW-1	Aqueous	E300	Anions by IC method - Water	102961	100	11/23/21 07:25 PM	IC2_211123A
	AXMW-1	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B
2111158-06A	AXMW-2	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	2	11/24/21 03:24 PM	ICP-MS4_211124D
	AXMW-2	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	50	11/24/21 02:43 PM	ICP-MS5_211124B

Page 1 of 2

Lab Order:2111158Client:Golder

Project: Sandow CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2111158-06B	AXMW-2	Aqueous	E300	Anions by IC method - Water	102961	100	11/23/21 07:42 PM	IC2_211123A
	AXMW-2	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 03:55 AM	IC2_211123A
	AXMW-2	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B
2111158-07A	AX-24	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	1	11/24/21 03:26 PM	ICP-MS4_211124D
	AX-24	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	50	11/24/21 02:45 PM	ICP-MS5_211124B
2111158-07B	AX-24	Aqueous	E300	Anions by IC method - Water	102961	100	11/23/21 07:59 PM	IC2_211123A
	AX-24	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 04:12 AM	IC2_211123A
	AX-24	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B
2111158-08A	AX-26	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	1	11/24/21 03:28 PM	ICP-MS4_211124D
	AX-26	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102952	50	11/24/21 02:48 PM	ICP-MS5_211124B
2111158-08B	AX-26	Aqueous	E300	Anions by IC method - Water	102961	100	11/23/21 08:16 PM	IC2_211123A
	AX-26	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 04:29 AM	IC2_211123A
	AX-26	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B
2111158-09A	AX-27	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102970	50	11/29/21 01:51 PM	ICP-MS4_211129B
	AX-27	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102970	1	11/29/21 12:28 PM	ICP-MS5_211129A
2111158-09B	AX-27	Aqueous	E300	Anions by IC method - Water	102961	100	11/23/21 08:33 PM	IC2_211123A
	AX-27	Aqueous	E300	Anions by IC method - Water	102961	1	11/24/21 04:46 AM	IC2_211123A
	AX-27	Aqueous	M2540C	Total Dissolved Solids	102939	1	11/22/21 04:45 PM	WC_211122B

CLIENT:	Golder	Client Sample ID: AX-25R
Project:	Sandow CCR	Lab ID: 2111158-01
Project No:	19122262	Collection Date: 11/16/21 09:05 AM
Lab Order:	2111158	Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - WATER		SW60	20B			Analyst: SP	
Boron	0.197	0.0100	0.0300	mg/L	1	11/24/21 03:14 PM	
Calcium	210	5.00	15.0	mg/L	50	11/24/21 02:30 PM	
ANIONS BY IC METHOD - WATER		E30	0			Analyst: BM	
Chloride	400	30.0	100	mg/L	100	11/23/21 05:26 PM	
Fluoride	0.493	0.100	0.400	mg/L	1	11/24/21 02:30 AM	
Sulfate	492	100	300	mg/L	100	11/23/21 05:26 PM	
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS	
Total Dissolved Solids (Residue, Filterable)	2120	50.0	50.0	mg/L	1	11/22/21 04:45 PM	

Qualifiers:	ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Golder	Client Sample ID: AX-28
Sandow CCR	Lab ID: 2111158-02
19122262	Collection Date: 11/16/21 11:30 AM
2111158	Matrix: AQUEOUS
	Golder Sandow CCR 19122262 2111158

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.256	0.0100	0.0300		mg/L	1	11/24/21 03:16 PM
Calcium	466	5.00	15.0		mg/L	50	11/24/21 02:32 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: BM
Chloride	61.9	3.00	10.0		mg/L	10	11/23/21 11:57 PM
Fluoride	0.198	0.100	0.400	J	mg/L	1	11/24/21 02:47 AM
Sulfate	1760	100	300		mg/L	100	11/23/21 05:43 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	3040	50.0	50.0		mg/L	1	11/22/21 04:45 PM

Qualifiers:	ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

DHL	Analy	tical.	Inc.
	maiy	u cais	IIIC.

```
Date: 01-Dec-21
```

 CLIENT:
 Golder
 Client Sample ID: AX-29

 Project:
 Sandow CCR
 Lab ID: 2111158-03

 Project No:
 19122262
 Collection Date: 11/16/21 12:15 PM

 Lab Order:
 2111158
 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.341	0.0100	0.0300		mg/L	1	11/24/21 03:18 PM
Calcium	339	5.00	15.0		mg/L	50	11/24/21 02:35 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: BM
Chloride	297	30.0	100		mg/L	100	11/23/21 06:34 PM
Fluoride	0.201	0.100	0.400	J	mg/L	1	11/24/21 03:04 AM
Sulfate	1120	100	300		mg/L	100	11/23/21 06:34 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	2630	50.0	50.0		mg/L	1	11/22/21 04:45 PM

Qualifiers	ND - Not Detected at the SDI
Qualifiers.	ND - NOL DELECTED AT THE SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:	Golder	Client Sample ID: AX-23
Project:	Sandow CCR	Lab ID: 2111158-04
Project No:	19122262	Collection Date: 11/17/21 09:55 AM
Lab Order:	2111158	Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATE	R	SW60	20B				Analyst: SP
Boron	0.278	0.0100	0.0300		mg/L	1	11/24/21 03:20 PM
Calcium	300	5.00	15.0		mg/L	50	11/24/21 02:38 PM
ANIONS BY IC METHOD - WATER	र	E30	00				Analyst: BM
Chloride	248	3.00	10.0		mg/L	10	11/24/21 12:14 AM
Fluoride	0.259	0.100	0.400	J	mg/L	1	11/24/21 03:21 AM
Sulfate	651	10.0	30.0		mg/L	10	11/24/21 12:14 AM
TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	1860	50.0	50.0		mg/L	1	11/22/21 04:45 PM

Oualifiers :	ND - Not Detected at the SDL
Quanners.	THE THE DELECTED II THE SEL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Lab Order:

CLIENT:GolderProject:Sandow CCRProject No:19122262

2111158

Client Sample ID: AXMW-1 Lab ID: 2111158-05

Collection Date: 11/17/21 10:30 AM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW602	20B				Analyst: SP
Boron	8.21	0.200	0.600		mg/L	20	11/24/21 03:22 PM
Calcium	292	5.00	15.0		mg/L	50	11/24/21 02:40 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: BM
Chloride	160	30.0	100		mg/L	100	11/23/21 07:25 PM
Fluoride	0.181	0.100	0.400	J	mg/L	1	11/24/21 03:38 AM
Sulfate	1470	100	300		mg/L	100	11/23/21 07:25 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	2600	50.0	50.0		mg/L	1	11/22/21 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT:GolderProject:Sandow CCRProject No:19122262Lab Order:2111158

Client Sample ID: AXMW-2 Lab ID: 2111158-06

Collection Date: 11/17/21 11:58 AM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WAT	ER	SW60	20B				Analyst: SP
Boron	0.622	0.0200	0.0600		mg/L	2	11/24/21 03:24 PM
Calcium	423	5.00	15.0		mg/L	50	11/24/21 02:43 PM
ANIONS BY IC METHOD - WATE	ER	E30	0				Analyst: BM
Chloride	118	30.0	100		mg/L	100	11/23/21 07:42 PM
Fluoride	0.224	0.100	0.400	J	mg/L	1	11/24/21 03:55 AM
Sulfate	1160	100	300		mg/L	100	11/23/21 07:42 PM
TOTAL DISSOLVED SOLIDS		M254	OC				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	2620	50.0	50.0		mg/L	1	11/22/21 04:45 PM

Qualifiance	ND Not Detected at the SDI
Quanners:	ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

|--|

04:10 PM

CLIENT:	Golder	Client Sample ID: AX-24
Project:	Sandow CCR	Lab ID: 2111158-07
Project No:	19122262	Collection Date: 11/18/21 04
Lab Order:	2111158	Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - WATER		SW60	20B			Analyst: SP		
Boron	0.153	0.0100	0.0300		mg/L	1	11/24/21 03:26 PM	
Calcium	333	5.00	15.0		mg/L	50	11/24/21 02:45 PM	
ANIONS BY IC METHOD - WATER		E30	0				Analyst: BM	
Chloride	179	30.0	100		mg/L	100	11/23/21 07:59 PM	
Fluoride	0.138	0.100	0.400	J	mg/L	1	11/24/21 04:12 AM	
Sulfate	1070	100	300		mg/L	100	11/23/21 07:59 PM	
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS	
Total Dissolved Solids (Residue, Filterable)	2390	50.0	50.0		mg/L	1	11/22/21 04:45 PM	

Oualifiers:	ND - Not Detected at the SDL
Quanners:	ND - Not Detected at the SDI

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)

E - TPH pattern not Gas or Diesel Range Pattern

DHL Ana	lytical, Inc.		Date: 01-Dec-21									
CLIENT:	Golder			Clier	nt Sample ID: AX-2	26						
Project:	Sandow CCR	Lab ID: 2111158-08										
Project No:	19122262	Collection Date: 11/18/21 04:45 PM										
Lab Order:	2111158	Matrix: AQUEOUS										
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed					
TRACE META	LS: ICP-MS - WATER		SW60		Analyst: SP							
Boron		0.360	0.0100	0.0300	mg/L	1	11/24/21 03:28 PM					
Calcium		939	5.00	15.0	mg/L	50	11/24/21 02:48 PM					
ANIONS BY IC	METHOD - WATER		E30	00			Analyst: BM					
Chloride		2230	30.0	100	mg/L	100	11/23/21 08:16 PM					
Fluoride		<0.100	0.100	0.400	mg/L	1	11/24/21 04:29 AM					
Sulfate		1280 100 300 mg/L 100 11/23/21 08:16 PM										
TOTAL DISSO	LVED SOLIDS		M254	10C		Analyst: JS						

 OTAL DISSOLVED SOLIDS
 M2540C
 Analyst: JS

 Total Dissolved Solids (Residue,
 5930
 50.0
 50.0
 mg/L
 1
 11/22/21 04:45 PM

Qualifiers: ND - Not Detected at the SDL

Filterable)

J - Analyte detected between SDL and RL

- B Analyte detected in the associated Method Blank
- DF- Dilution Factor
- N Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative
- RL Reporting Limit (MQL adjusted for moisture and sample size)
- SDL Sample Detection Limit
- E TPH pattern not Gas or Diesel Range Pattern

DHL Anal	lytical, Inc.				D	ate:	01-Dec-21					
CLIENT:	Golder			Clier	nt Samp	le ID: AX-27	7					
Project:	Sandow CCR		Lab ID: 2111158-09									
Project No:	19122262		Collection Date: 11/18/21 05:25 PM									
Lab Order:	2111158		Matrix: AQUEOUS									
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed				
TRACE METAI	LS: ICP-MS - WATER		SW6020B			Analyst: SP						
Boron		0.249	0.0100	0.0300		mg/L	1	11/29/21 12:28 PM				
Calcium		390	5.00	15.0		mg/L	50	11/29/21 01:51 PM				
ANIONS BY IC	METHOD - WATER		E300					Analyst: BM				
Chloride		461	30.0	100		mg/L	100	11/23/21 08:33 PM				
Fluoride	_	0.204	0.100	0.400	J	mg/L	1	11/24/21 04:46 AM				
Sulfate		419 100 300 mg/L 100 11/23/21 08:33 PM										

 TOTAL DISSOLVED SOLIDS
 M2540C
 Analyst: JS

 Total Dissolved Solids (Residue, Filterable)
 1980
 50.0
 50.0
 mg/L
 1
 11/22/21 04:45 PM

0	ND Not Detected at the CDI
Qualifiers:	ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

- S Spike Recovery outside control limits
- C Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 15

CLIENT: Golder Work Order: 2111158 Project: Sandow CCR

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS4_211104B

Sample ID:	DCS2-102615	Batch ID:	102615		TestNo:	SW	6020B		Units:	mg/L	-
SampType:	DCS2	Run ID:	ICP-MS4_	211104B	Analysis	Date: 11/4	4/2021 10:47	:00 AM	Prep Date:	10/2	9/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Calcium			0.300	0.300	0.300	0	100	70	130	0	0
Sample ID:	DCS4-102615	Batch ID:	102615		TestNo:	SW	6020B		Units:	mg/L	-
SampType:	DCS4	Run ID:	ICP-MS4_	211104B	Analysis	Date: 11/4	4/2021 10:52	:00 AM	Prep Date:	10/2	9/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron			0.0317	0.0300	0.0300	0	106	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method BlankJ Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

CLIENT:	Golder				AN	JALYT	ICAL (OC SI	IMMAR	V REPORT
Work Ord	ler: 211115	8			1 11					
Project:	Sandow	CCR					RunII): I	CP-MS4_2	211124D
The QC data 06A, 21111	a in batch 102952 58-07A, 2111158-	applies to the 08A	following s	samples: 211	1158-01A, 211	1158-02A, 2	111158-03A	, 2111158	8-04A, 21111	58-05A, 2111158-
Sample ID:	MB-102952	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L
SampType:	MBLK	Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 3:02	2:00 PM	Prep Date:	11/23/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPDLimit Qua
Boron			<0.0100	0.0300						
Sample ID:	LCS-102952	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L
SampType:	LCS	Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 3:04	:00 PM	Prep Date:	11/23/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPDLimit Qua
Boron			0.186	0.0300	0.200	0	93.2	80	120	
Sample ID:	LCSD-102952	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L
SampType:	LCSD	Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 3:06	6:00 PM	Prep Date:	11/23/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Boron			0.193	0.0300	0.200	0	96.3	80	120	3.25 15
Sample ID:	2111159-21A SD	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L
SampType:	SD	Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 3:12	2:00 PM	Prep Date:	11/23/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPDLimit Qua
Boron			0.318	0.150	0	0.290				9.33 20
Sample ID:	2111159-21A PD	S Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L
SampType:	PDS	Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 3:32	2:00 PM	Prep Date:	11/23/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPDLimit Qua
Boron			0.463	0.0300	0.200	0.290	86.7	75	125	
Sample ID:	2111159-21A MS	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L
SampType:	MS	Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 3:34	:00 PM	Prep Date:	11/23/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Boron			0.475	0.0300	0.200	0.290	92.8	75	125	
Sample ID:	2111159-21A MS	D Batch ID:	102952		TestNo	SW6	6020B		Units:	mg/L
SampType:	MSD	Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 3:36	:00 PM	Prep Date:	11/23/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RPDLimit Qua
Boron			0.501	0.0300	0.200	0.290	106	75	125	5.25 15

Qualifiers:

CLIENT:

Golder

- В Analyte detected in the associated Method Blank
- Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 2 of 15

Ν Parameter not NELAP certified

CLIENT:	Golder				AN	NALYT	ICAL (QC S	UMMA	RY REI	PORT
Work Order: Project:	Sandow C	CCR					RunII	D:	ICP-MS4	_211124D	
Sample ID: ICV-2	11124	Batch ID:	R118212	2	TestNo	o: SW6	6020B		Units:	mg/L	
SampType: ICV		Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 10:0	08:00 A	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPD	Limit Qual
Boron			0.100	0.0300	0.100	0	100	90	110		
Sample ID: LCVL	-211124	Batch ID:	R118212	2	TestNo	o: SW6	6020B		Units:	mg/L	
SampType: LCVL		Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 10:2	22:00 A	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPD	Limit Qual
Boron			0.0168	0.0300	0.0200	0	83.9	80	120		
Sample ID: CCV7	-211124	Batch ID:	R118212	2	TestNo	o: SW6	6020B		Units:	mg/L	
SampType: ССV		Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 2:52	2:00 PM	Prep Date	1	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPD	Limit Qual
Boron			0.198	0.0300	0.200	0	98.8	90	110		
Sample ID: CCV8	-211124	Batch ID:	R118212	2	TestNo	o: SW6	6020B		Units:	mg/L	
SampType: ССV		Run ID:	ICP-MS	4_211124D	Analys	is Date: 11/2	4/2021 3:38	B:00 PM	Prep Date	1	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPD	Limit Qual
Boron			0.197	0.0300	0.200	0	98.7	90	110		

CLIENT:

Golder

-

Page 3 of 15

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

CLIENT: Work Order:	Golder 2111158				AN	NALYT	ICAL O	QC SI	UMMA	RYF	REPORT
Project:	Sandow C	CCR					RunII	D: 1	CP-MS4	_21112	29B
Sample ID: ICV	-211129	Batch ID:	R11822 ⁻	1	TestNo	o: SWO	6020B		Units:	mg/L	-
SampType: ICV		Run ID:	ICP-MS	4_211129B	Analys	is Date: 11/2	9/2021 10:4	42:00 A	Prep Date):	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Calcium			2.56	0.300	2.50	0	103	90	110		
Sample ID: LC	/L-211129	Batch ID:	R11822	1	TestNo	o: SWe	6020B		Units:	mg/L	-
SampType: LC\	/L	Run ID:	ICP-MS	4_211129B	Analys	is Date: 11/2	9/2021 10:4	49:00 A	Prep Date):	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD	RPDLimit Qual
Calcium			0.105	0.300	0.100	0	105	80	120		
Sample ID: CC	/4-211129	Batch ID:	R11822	1	TestNo	: SW	6020B		Units:	mg/L	-
SampType: CC	/	Run ID:	ICP-MS	4_211129B	Analys	is Date: 11/2	9/2021 1:08	3:00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD	RPDLimit Qual
Calcium			5.29	0.300	5.00	0	106	90	110		
Sample ID: CC	/5-211129	Batch ID:	R11822 ⁻	1	TestNo	o: SWe	6020B		Units:	mg/L	-
SampType: CC	/	Run ID:	ICP-MS	4_211129B	Analys	is Date: 11/2	:9/2021 2:1 1	1:00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Calcium			5.31	0.300	5.00	0	106	90	110		

CLIENT:

Golder

-

Page 4 of 15

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

CLIENT: Work Order:	Golder 2111158				ANALYTICAL QC SUMMARY REPO							
Project:	Sandow C	CR					RunID): I(CP-MS5_	_21110	01A	
Sample ID: DCS2	-102615	Batch ID:	102615		TestNo:	SWe	6020B		Units:	mg/L		
SampType: DCS2		Run ID:	ICP-MS5	_211101A	Analysis	Date: 11/1	/2021 10:43	:00 AM	Prep Date:	10/29	9/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual	
Calcium			0.314	0.300	0.300	0	105	70	130	0	0	
Sample ID: DCS4	-102615	Batch ID:	102615		TestNo:	SWe	6020B		Units:	mg/L		
SampType: DCS4		Run ID:	ICP-MS5	_211101A	Analysis	Date: 11/1	/2021 10:49	:00 AM	Prep Date:	10/29	9/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual	
Boron			0.0373	0.0300	0.0300	0	124	70	130	0	0	

Qualifiers:

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limit Page 5 of 15

R RPD outside accepted control limitsS Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENI:	Golder				AN	JALYT	ICAL (OC SI	IMMAI	RY RE	PORT
Work Ord	er: 211115	8									
Project:	Sandow	CCR					RunIl	D: I	CP-MS5_	211124E	8
The QC data 06A, 211115	a in batch 102952 58-07A, 2111158-0	applies to the 08A	following s	amples: 211	1158-01A, 211	1158-02A, 2	111158-03/	A, 2111158	3-04A, 2111 <i>°</i>	158-05A, 2 ⁻	111158-
Sample ID:	MB-102952	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 2:14	4:00 PM	Prep Date:	11/23/20)21
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RP	DLimit Qual
Calcium			<0.100	0.300							
Sample ID:	LCS-102952	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 2:17	7:00 PM	Prep Date:	11/23/20)21
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RP	DLimit Qual
Calcium			4.61	0.300	5.00	0	92.2	80	120		
Sample ID:	LCSD-102952	Batch ID:	102952		TestNo	: SWe	6020B		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 2:20	0:00 PM	Prep Date:	11/23/20	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RP	DLimit Qual
Calcium			4.50	0.300	5.00	0	90.0	80	120	2.52	15
Sample ID:	2111159-21A SD	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 2:27	7:00 PM	Prep Date:	11/23/20	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RP	DLimit Qual
Calcium			588	1.50	0	586				0.499	20
Sample ID:	2111159-21A PD	S Batch ID:	102952		TestNo	: SWe	6020B		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 2:53	3:00 PM	Prep Date:	11/23/20	021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RP	DLimit Qual
Calcium			561	0.300	5.00	586	-496	75	125		S
Sample ID:	2111159-21A MS	Batch ID:	102952		TestNo	: SW6	6020B		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 2:50	6:00 PM	Prep Date:	11/23/20)21
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RP	DLimit Qual
Calcium			604	0.300	5.00	586	362	75	125		S
Sample ID:	2111159-21A MS	D Batch ID:	102952		TestNo	: SWe	6020B		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 2:58	3:00 PM	Prep Date:	11/23/20)21
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RP	DLimit Qual
Calcium			606	0.300	5.00	586	409	75	125	0.393	15 S

Qualifiers:

CLIENT:

Golder

В Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits

Page 6 of 15

Ν Parameter not NELAP certified

CLIENT:	Golder				AN	NALYT	ICAL (OC SU	JMMA	RY H	REPORT
Work Order:	2111158										
Project:	Sandow C	CCR					RunII	D: I	CP-MS5	_21112	24B
Sample ID: ICV-2	11124	Batch ID:	R118201		TestNo	: SW	6020B		Units:	mg/l	-
SampType: ICV		Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 10:1	12:00 A	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Calcium			2.39	0.300	2.50	0	95.5	90	110		
Sample ID: LCVL	-211124	Batch ID:	R118201		TestNo	: SW	6020B		Units:	mg/l	-
SampType: LCVL	-	Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 10:2	21:00 A	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Calcium			0.105	0.300	0.100	0	105	80	120		
Sample ID: CCV5	5-211124	Batch ID:	R118201		TestNo	: SW	6020B		Units:	mg/l	_
SampType: CCV		Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 2:09	9:00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Calcium			4.87	0.300	5.00	0	97.4	90	110		
Sample ID: CCV6	6-211124	Batch ID:	R118201		TestNo	: SW	6020B		Units:	mg/l	-
SampType: CCV		Run ID:	ICP-MS	5_211124B	Analys	is Date: 11/2	4/2021 3:01	1:00 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Calcium			4.93	0.300	5.00	0	98.6	90	110		

CLIENT:

Golder

Page 7 of 15

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

Project:	Sandow C	CR					RunII): I	CP-MS5_2	21112	9A
The QC dat	ta in batch 102970 ap	plies to the	following s	amples: 211	1158-09A						
Sample ID:	MB-102970	Batch ID:	102970		TestNo:	SW	6020B		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS	5_211129A	Analysis	a Date: 11/2	9/2021 12:0	7:00 P	Prep Date:	11/24	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron Calcium			<0.0100 <0.100	0.0300 0.300							
Sample ID:	LCS-102970	Batch ID:	102970		TestNo:	SW	6020B		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-MS	5_211129A	Analysis	B Date: 11/2	9/2021 12:1	0:00 P	Prep Date:	11/24	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron			0.178	0.0300	0.200	0	88.8	80	120		
Calcium			4.85	0.300	5.00	0	97.0	80	120		
Sample ID:	LCSD-102970	Batch ID:	102970		TestNo:	SW	6020B		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS	5_211129A	Analysis	a Date: 11/2	9/2021 12:1	3:00 P	Prep Date:	11/24	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron			0.184	0.0300	0.200	0	92.0	80	120	3.51	15
Calcium			4.79	0.300	5.00	0	95.8	80	120	1.26	15
Sample ID:	2111168-22C SD	Batch ID:	102970		TestNo:	SW	6020B		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS	5_211129A	Analysis	a Date: 11/2	9/2021 12:2	0:00 P	Prep Date:	11/24	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron			<0.0500	0.150	0	0				0	20
Calcium			<0.500	1.50	0	0				0	20
Sample ID:	2111168-22C PDS	Batch ID:	102970		TestNo:	SW	6020B		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS	5_211129A	Analysis	a Date: 11/2	9/2021 12:4	6:00 P	Prep Date:	11/24	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron			0.199	0.0300	0.200	0	99.7	75	125		
Calcium			4.72	0.300	5.00	0	94.4	75	125		
Sample ID:	2111168-22C MS	Batch ID:	102970		TestNo:	SW	6020B		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS	5_211129A	Analysis	a Date: 11/2	9/2021 12:4	9:00 P	Prep Date:	11/24	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Boron			0.191	0.0300	0.200	0	95.6	75	125		
Calcium			4.82	0.300	5.00	0	96.5	75	125		

ANALYTICAL QC SUMMARY REPORT

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor MDL Method Detection Limit J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 15

J Analyte detected between SDL and RL

CLIENT:

Work Order:

Golder

2111158

CLIENT:	Golder				AN	JALVT	TCAL	DC SI	IMMA	RYR	EPOI	RT
Work Order:	2111158				1 1 1			2CD				
Project:	Sandow C	CR					RunII	D:]	ICP-MS5	5_21112	9A	
Sample ID: 21111	68-22C MSD	Batch ID:	102970		TestNo	: SW	6020B		Units:	mg/L		
SampType: MSD		Run ID:	ICP-MS	5_211129A	Analys	is Date: 11/2	29/2021 12:5	52:00 P	Prep Date	e: 11/24	/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	t %RPD F	RPDLimit	Qual
Boron			0.192	0.0300	0.200	0	95.8	75	125	0.188	15	
Calcium			4.82	0.300	5.00	0	96.4	75	125	0.026	15	

Page 9 of 15

Qualifiers:

Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

CLIENT:	Golder				Aľ	NALYT	ICAL (OC S	UMMA	RY REPORT
Work Order: Project:	2111158 Sandow C	CCR					RunII	D:	ICP-MS5	_211129A
Sample ID: ICV-2	211129	Batch ID:	R11821	B	TestNo	o: SW6	6020B		Units:	mg/L
SampType: ICV		Run ID:	ICP-MS	5_211129A	Analys	is Date: 11/2	9/2021 11:	54:00 A	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLi	mit HighLimit	%RPD RPDLimit Qual
Boron			0.0979	0.0300	0.100	0	97.9	90	110	
Calcium			2.39	0.300	2.50	0	95.7	90	110	
Sample ID: LCVL	-211129	Batch ID:	R11821	8	TestNo	D: SW6	6020B		Units:	mg/L
SampType: LCVL	-	Run ID:	ICP-MS	5_211129A	Analys	is Date: 11/2	9/2021 11:	59:00 A	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLi	mit HighLimit	%RPD RPDLimit Qual
Boron			0.0227	0.0300	0.0200	0	113	80	120	
Calcium			0.0947	0.300	0.100	0	94.7	80	120	
Sample ID: CCV	1-211129	Batch ID:	R11821	8	TestNo	o: SW6	6020B		Units:	mg/L
SampType: CCV		Run ID:	ICP-MS	5_211129A	Analys	is Date: 11/2	9/2021 12:	54:00 P	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLi	mit HighLimit	%RPD RPDLimit Qual
Boron			0.200	0.0300	0.200	0	100	90	110	
Calcium			5.01	0.300	5.00	0	100	90	110	

Qualifiers:

CLIENT:

Golder

В Analyte detected in the associated Method Blank Analyte detected between MDL and RL

J ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 10 of 15

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

CLIENT: Work Ordoni	Golder				AN	ALYT	ICAL (QC S	UMMA	RY I	REPOI	RT
Project.	Sandow (CR					RunII):	IC2 2109	28A		
110jeet.	Buildow	een					Kumi					
Sample ID: DCS2	-102216	Batch ID:	102216		TestNo	E300)		Units:	mg/	L	
SampType: DCS2		Run ID:	IC2_210	928A	Analysi	is Date: 9/28	/2021 1:38:	01 PM	Prep Date	: 9/2 8	/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD	RPDLimit	Qual
Chloride			0.533	1.00	0.5000	0	107	70	130	0	0	
Fluoride			0.179	0.400	0.2000	0	89.5	70	130	0	0	

1.500

0

1.55

3.00

70

130

0

0

Page 11 of 15

104

Quanner 5.

Sulfate

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

RE Reporting Emit

В

- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits
 - S Spike Recovery outside control limits

 - N Parameter not NELAP certified

CLIENT:	Golder				AN	AL YTI	CAL (C SI	IMMAR	V R	EPORT
Work Order:	2111158										
Project:	Sandow C	CR					RunII): I	C2_21112	3A	
The QC data in batc 06B, 2111158-07B, 2	h 102961 ap 2111158-08E	plies to the 3, 2111158	following -09B	samples: 211	1158-01B, 2111	158-02B, 211	1158-03B	, 211115	8-04B, 21111	58-05B,	2111158-
Sample ID: MB-102	961	Batch ID:	102961		TestNo:	E300			Units:	mg/L	
SampType: MBLK		Run ID:	IC2_21	1123A	Analysis	Date: 11/23/2	2021 3:35	:17 PM	Prep Date:	11/23/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			<0.300	1.00							
Fluoride			<0.100	0.400							
Sulfate			<1.00	3.00							
Sample ID: LCS-10	2961	Batch ID:	102961		TestNo:	E300			Units:	mg/L	
SampType: LCS		Run ID:	IC2_21	1123A	Analysis	Date: 11/23/2	2021 3:52	:17 PM	Prep Date:	11/23/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110		
Fluoride			4.03	0.400	4.000	0	101	90	110		
Sulfate			30.2	3.00	30.00	0	101	90	110		
Sample ID: LCSD-1	02961	Batch ID:	102961		TestNo:	E300			Units:	mg/L	
SampType: LCSD		Run ID:	IC2_21	1123A	Analysis	Date: 11/23/2	2021 4:09	:17 PM	Prep Date:	11/23/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110	0.348	20
Fluoride			4.01	0.400	4.000	0	100	90	110	0.435	20
Sulfate			30.0	3.00	30.00	0	100	90	110	0.474	20
Sample ID: 211115	8-02BMS	Batch ID:	102961		TestNo:	E300			Units:	mg/L	
SampType: MS		Run ID:	IC2_21	1123A	Analysis	Date: 11/23/2	2021 6:00	:31 PM	Prep Date:	11/23/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			2020	100	2000	104.3	96.0	90	110		
Fluoride			1960	40.0	2000	0	97.8	90	110		
Sulfate			3580	300	2000	1758	91.2	90	110		
Sample ID: 2111158	8-02BMSD	Batch ID:	102961		TestNo:	E300			Units:	mg/L	
SampType: MSD		Run ID:	IC2_21	1123A	Analysis	Date: 11/23/2	2021 6:17	':31 PM	Prep Date:	11/23/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Chloride			2050	100	2000	104.3	97.1	90	110	1.05	20
Fluoride			1980	40.0	2000	0	99.1	90	110	1.27	20
Sulfate			3620	300	2000	1758	92.8	90	110	0.891	20

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

Analyte detected between SDL and RL

J

CLIENT:

Golder

Ν Parameter not NELAP certified Page 12 of 15

Work Order: Project:	2111158 Sandow C	CCR			A 1		RunII): I	$C2_{21112}$	XI X 23A	
Sample ID: 21111	158-03BMS	Batch ID:	102961		TestNo): E30	0		Units:	mg/L	
SampType: MS		Run ID:	IC2_211	123A	Analys	is Date: 11/2	3/2021 6:51	I:31 PM	Prep Date:	11/23	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	RPDLimit Qual
Chloride			2270	100	2000	296.9	98.8	90	110		
Fluoride			1960	40.0	2000	0	97.9	90	110		
Sulfate			3000	300	2000	1121	93.7	90	110		
Sample ID: 2111	158-03BMSD	Batch ID:	102961		TestNo	: E30	0		Units:	mg/L	
SampType: MSD		Run ID:	IC2_211	123A	Analys	is Date: 11/2	3/2021 7:08	3:31 PM	Prep Date:	11/23	/2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	RPDLimit Qual
Chloride			2280	100	2000	296.9	99.0	90	110	0.161	20
Fluoride			1970	40.0	2000	0	98.4	90	110	0.517	20
Sulfate			3000	300	2000	1121	93.8	90	110	0.074	20

Qualifiers:

В

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 13 of 15

- S Spike Recovery outside control limits
- Ν Parameter not NELAP certified

ANALYTICAL OC SUMMARY REPORT

CLIENT: Golder

Project:	Sandov	v CCR					RunII	D: I	C2_2111	23A	
Sample ID:	ICV-211123	Batch ID:	R11816	6	TestNo	D: E30	0		Units:	mg/L	
SampType:	ICV	Run ID:	IC2_21	1123A	Analys	is Date: 11/2	3/2021 3:01	I:17 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride			26.1	1.00	25.00	0	104	90	110		
Fluoride			10.2	0.400	10.00	0	102	90	110		
Sulfate			76.3	3.00	75.00	0	102	90	110		
Sample ID:	CCV1-211123	Batch ID:	R11816	6	TestNo	D: E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_21	1123A	Analys	is Date: 11/2	3/2021 9:58	3:31 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride			10.3	1.00	10.00	0	103	90	110		
Fluoride			4.08	0.400	4.000	0	102	90	110		
Sulfate			30.3	3.00	30.00	0	101	90	110		
Sample ID:	CCV2-211123	Batch ID:	R11816	6	TestNo	D: E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_21	1123A	Analys	is Date: 11/2	4/2021 1:56	6:31 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110		
Fluoride			4.12	0.400	4.000	0	103	90	110		
Sulfate			30.2	3.00	30.00	0	101	90	110		
Sample ID:	CCV3-211123	Batch ID:	R11816	6	TestNo	D: E30	0		Units:	mg/L	
SampType:	CCV	Run ID:	IC2_21	1123A	Analys	is Date: 11/2	4/2021 5:54	4:31 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110		
Fluoride			4.13	0.400	4.000	0	103	90	110		
Sulfate			30.2	3.00	30.00	0	101	90	110		

Qualifiers:

CLIENT:

Work Order:

Golder

2111158

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Page 14 of 15

CLIENT:	Golder				ΔΝ		ICAL (OC SI	IMMAI	RVRI	FPORT
Work Order:	2111158						ICAL	QC DC		XI M	
Project:	Sandow C	CR					RunIl	D: V	VC_21112	22B	
The QC data in bat 06B, 2111158-07B	ch 102939 ap , 2111158-08E	plies to the 3, 2111158	following s -09B	amples: 211	1158-01B, 211 ⁻	1158-02B, 2	2111158-03E	3, 2111158	3-04B, 21111	158-05B, 2	2111158-
Sample ID: MB-10	2939	Batch ID:	102939		TestNo	: M25	540C		Units:	mg/L	
SampType: MBLK		Run ID:	WC_211	122B	Analysi	s Date: 11/2	22/2021 4:4	5:00 PM	Prep Date:	11/22/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD RF	PDLimit Qual
Total Dissolved Sol	lids (Residue,	Filtera	<10.0	10.0							
Sample ID: LCS-1	02939	Batch ID:	102939		TestNo	: M25	540C		Units:	mg/L	
SampType: LCS		Run ID:	WC_211	122B	Analysi	s Date: 11/2	22/2021 4:4	5:00 PM	Prep Date:	11/22/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD RI	PDLimit Qual
Total Dissolved Sol	lids (Residue,	Filtera	756	10.0	745.6	0	101	90	113		
Sample ID: 21111	58-01B-DUP	Batch ID:	102939		TestNo	: M25	540C		Units:	mg/L	
SampType: DUP		Run ID:	WC_211	122B	Analysi	s Date: 11/2	22/2021 4:4	5:00 PM	Prep Date:	11/22/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD RI	PDLimit Qual
Total Dissolved Sol	lids (Residue,	Filtera	2110	50.0	0	2115				0.237	5
Sample ID: 21111	58-02B-DUP	Batch ID:	102939		TestNo	: M25	540C		Units:	mg/L	
SampType: DUP		Run ID:	WC_211	122B	Analysi	s Date: 11/2	22/2021 4:4	5:00 PM	Prep Date:	11/22/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD RI	PDLimit Qual
Total Dissolved Sol	lids (Residue,	Filtera	3060	50.0	0	3040				0.656	5

CLIENT:

Golder

Page 15 of 15

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits
	RL	Reporting Limit	S	Spike Recovery outside control limits
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAP certified

CLIENT: Golder Work Order: 2111158 Project: Sandow CCR

TestNo:	E300	MDL	MQL
Analyte		mg/L	mg/L
Chloride		0.300	1.00
Fluoride		0.100	0.400
Sulfate		1.00	3.00
TestNo:	SW6020B	MDL	MQL
Analyte		mg/L	mg/L
Boron		0.0100	0.0300
Calcium		0.100	0.300
TestNo:	M2540C	MDL	MQL
Analyte		mg/L	mg/L
Total Dis	solved Solids (Residue, Filt	10.0	10.0

Date: 01-Dec-21

MQL SUMMARY REPORT